
Collision Checking Using Occupancy Spaces

Nadia Magnenat-Thalmann
Daniel Thalmann

Institute for Media Innovation
Nanyang Technological University

http://imi.ntu.edu.sg/

Motion segments
Project mesh onto ground plane

Bounding Circle Hierarchy
Representation of occupancy space

allows for fast intersection tests

Crowd simulation plays an ever increasing role in different fields, each 
having different requirements for their applications.  Full collision 
detection on all characters is computationally expensive, hence for a real-
time crowd an approximation of the character shape is needed.

Many crowd simulation systems model a crowd agent as a cylinder. 
However, sometimes a more precise representation is needed.

Collision checking in crowds

To represent the ospace we propose a bounding circle hierarchy (BCH).  
For each ospace OS(M, [t1, t2]), the smallest circle enclosing the shape is 
stored. The algorithm then divides the shape into two halves, stores their 
two smallest enclosing circles, and recurses until the radius of the circle is 
smaller than a predefined threshold. The result is a binary tree where each 
node describes the centre and radius of the circle.

Using a threshold of 1 cm, an intersection test between two BCHs takes 
around 17 µs on a current computer.

The BCH was chosen in favour of other space partitioning techniques, such 
as a quadtree. Rotation is required to align an ospace with a character, and 
the circles provide us with a rotation-symmetric representation.

Representation

Sybren A. Stüvel
Arjan Egges
A. Frank van der Stappen

Virtual Human Technology Lab
Universiteit  Utrecht
http://vhtlab.nl/

We propose a novel method of modelling the space occupied by animated 
meshes, called the occupancy space (ospace).

The occupancy space OS(M, [t1, t2]) is defined as the ground projection 
of a character's animated mesh M over the time interval [t1, t2].

It thus forms a more precise approximation of the mesh shape than a 
bounding cylinder.

Occupancy Space

We have implemented a crowd simulation using the above system, and 
observed that characters choose slower, smaller movements when 
available space becomes limited.

Note that our method does not require all characters to use the same 
animation technique. For example, one could use motion capture to
drive a single character, and in real-time calculate and register the ospace 
that it occupies. A cylinder-based crowd system could also interact, since a 
cylinder is simply a single-circle BCH.

We are currently evaluating the chosen method of recursive intersection, 
and performing experiments to determine optimal settings for the 
representation and the algorithms that use it.

Conclusion

COMMANDS

Collision checks
intersect(BCH1, BCH2, T)  bool:→

    if BCH1 = ∅ or BCH2 = ∅:
        return false

    if BCH1.circle  ∩  T * BCH2.circle = ∅:
        return false

    if BCH1 has sublevels and BCH2 has sublevels:
        return intersect(BCH1.left, BCH2.left, T) or
               intersect(BCH1.left, BCH2.right, T) or
               intersect(BCH1.right, BCH2.left, T) or
               intersect(BCH1.right, BCH2.right, T)
    if BCH1 has sublevels:
        return intersect(BCH1.left, BCH2, T) or
               intersect(BCH1.right, BCH2, T)
    if BCH1 has sublevels:
        return intersect(BCH1, BCH2.left, T) or
               intersect(BCH1, BCH2.right, T)

    Neither have another level, so this intersection
    determines the outcome.
    return true

Intersecting occupancy spaces
Intersecting circles are shown in orange. Only a subset 

of those circles are visited during intersection tests.

Scan for a digital copy 
QR + NFC


	Slide 1

