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ABSTRACT

In many constrained environments, precise control of foot place-
ment during character locomotion is crucial to avoid collisions and
to ensure a natural locomotion. In this paper, we present a new
exact motion synthesis technique that generates planar parameter-
ized stepping motions based on a combination of rotational and
Cartesian interpolation. Existing stepping motions are blended in
a linearized representation to guarantee exact control of foot place-
ment. By concatenating these parameterized steps, we can generate
highly-constrained stepping animations in real-time. Furthermore,
because of a novel blend candidates selection strategy, soft con-
straints such as stance duration and foot orientation are also taken
into account. We will show that our technique can generate a va-
riety of different stepping animations efficiently, even though we
impose many constraints on the animation.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

1 INTRODUCTION

Locomotion plays an important role in games and simulations.
Game characters constantly walk around the environment while try-
ing to avoid obstacles. Therefore, generating animations of human
walking has received a lot of attention during the past decades. Var-
ious techniques have been developed that generate human locomo-
tion, each having its own advantages and disadvantages.

Many locomotion systems are driven by a path. Given an in-
put path, the locomotion system generates an animation that tries
to follow this path through the environment as closely as possible.
However, simply providing the path that a character should follow
is not always sufficient. In environments containing narrow corri-
dors or lots of obstacles exact foot placement and different loco-
motion styles such as side-stepping and walking backwards can be
required. In such case, a global path is an underspecification of the
motion we want the character to perform. Instead, a control system
based on foot placement may be more appropriate. By providing
the desired foot positions instead of a path, it is possible to control
virtual characters more precisely. However, it is not trivial to pro-
duce an animation that is realistic and that adheres to a set of foot
placement constraints. Furthermore, many games and simulations
require such a system to be real-time.

This animation problem is also known as the stepping stone
problem. Given a set of query foot placements, called a foot plan,
that contains temporal and spatial constraints, generate an anima-
tion that adheres to these constraints. In our problem setting, we
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Figure 1: In some environments, exact foot placement is very im-
portant. Our technique generates animations that exactly follow a
desired foot plan.

consider the foot positions as hard constraints and foot orienta-
tion and temporal constraints, such as swing duration, as soft con-
straints. Footprint-driven animation is already supported by several
3D modeling packages, such as 3D Studio Max [15], showing that
foot prints provide an intuitive means for creating an animation.
Often, these commercial footprint-driven systems are not very ver-
satile: foot plans that exhibit other motions than regular walking
may result in self-intersection or unpredictable behavior [5].

There are several advantages in footprint-driven techniques over
path-driven techniques. One problem is that the pelvis (root) paths
can be fairly complicated and hard to plan in cases that involve a
manipulation task, such as opening a door or picking up an ob-
ject. Also, foot placement over many steps is the key determinant
of dynamic stability [18]. Foot placement will provide us with up-
per body balancing information which is useful in case we want to
modify the upper body motion. Finally, decoupling step planning
from animation will reduce the dimensionality of the generic mo-
tion planning problem. Instead of planning all degrees of freedom
of an articulated body in a high-dimensional configuration space,
a planner, such as [5], only needs to plan foot placements, after
which the animation of the character following the footsteps can be
computed.

1.1 Motion Parameterization
In this paper we present a new motion parameterization technique
for planar foot steps based on motion interpolation. In many sys-
tems, the user desires control over specific motion properties, such
as the end location of a punch or the curvature of walking. Blend-
ing techniques can be used to generate such parameterized motions
given these high-level parameters.

Motion parameterization can be formally defined as follows:
given a set of n example motions M, each corresponding to a pa-
rameter value p ∈ P where P is a d-dimensional parameter space,
and a query parameter value pq, blend a set of blend candidates



B ⊆M such that the resulting motion corresponds to pq. Clearly
the resulting motion depends on the blending scheme. We define
a parameter mapping f : M→ P as the function that retrieves the
parameter value p from a motion M. Note that such a mapping is
many-to-one, as many motions can correspond to the same abstract
parameter. In case of motion parameterization, we are looking for
the inverse function f−1 : P→M. Given a query parameter value
pq, find (one motion from) the set of motions Mp that corresponds
to pq. The parameter mapping does not need to be bijective, for
many motions can correspond to the same parameter and this in-
verse mapping is one-to-many. In Section 2 we will elaborate on
existing motion parameterization techniques.

1.2 Our contribution

Our technique allows for real-time synthesis of concatenated
stepping motions that exactly step on the desired positions, while
taking into account soft constraints such as foot orientation and
swing duration. Our technique is comprised by two novel concepts.

Hybrid interpolation scheme
To achieve exact foot placement, we present a novel exact motion
parameterization technique that interpolates between a number
of example stepping animations using the (partially linearized)
skeleton representation presented by Kulpa et al. [12]. We present
a hybrid interpolation scheme that uses both Cartesian (positional)
and rotational interpolation of joints. This results in foot placement
parameters that are linear in the blend weights, yielding exact
positioning results. So, in contrast to standard blending techniques,
the accuracy of our technique is not dependent on the resolution of
the example motions in the parameter space.

Blend candidate selection strategy for soft constraints
Where standard techniques often just take the nearest examples
in parameter space as blend candidates, our exact interpolation
scheme allows us to consider examples that are further away in
parameter space. A blend candidate selection scheme evaluates
examples in a higher, more descriptive, parameter space. Soft
constraints are then also taken into account. Our technique is fully
automatic: no manual annotation of animations is needed. Also, no
foot trajectory modification is required because we guarantee exact
foot placement. This is in contrast to standard parameterization
techniques, which generally cannot guarantee exact positioning.

An overview of our system is provided in Section 3. In Section 4
we will elaborate on the construction of the high-dimensional and
low-dimensional parameter spaces. In Section 5 we will present our
technique to query these spaces for suitable blend candidates and
blend the animations to construct realistic motion in real-time with
exact foot placement. In Section 6 we will discuss experimental
results and Section 7 concludes the paper. Before we detail our
method, we will first discuss some related work.

2 RELATED WORK

A lot of work has been done on generating human locomotion.
In general, most techniques can be classified in three categories.
Procedural techniques calculate locomotion from scratch based on
empirical and biomechanical concepts. Physics-based techniques
simulate locomotion by applying realistic torques on the joints. A
third class is comprised by example-based approaches. Existing
motions are reused to generate new motions. Basically, there are
two main classes of example-based techniques. Motion concate-
nation techniques stitch clips of motion together [10, 13]. Motion
parameterization techniques interpolate between two or more ex-
isting motions to generate new motions corresponding to a specific
high-level parameter such as end-effector position or locomotion

curvature. Motion concatenation generally yields more natural mo-
tion, while motion parameterization offers a higher level of control.
Combinations of these two techniques have also been investigated
[8].

Not many techniques offer exact foot placement control. One of
the earliest techniques that generate animations according to an ex-
plicit foot plan is from Van de Panne [23]. A space-time optimizer
determines the COM trajectory after which inverse kinematics is
used to determine the leg motion. Chung and Hahn [2] present a
procedural hierarchical system that generates forward walking over
foot prints laid over uneven terrain based on biomechanical prin-
ciples. Coros et al. [3] and Wu and Zordan [25] present physics-
based controllers that are aware of a foot plan and try to follow it
as closely as possible. Choi et al. [1] build up a roadmap by sam-
pling valid stances of the biped figure. Two stances are connected
if they can be connected with an adapted (portion of a) motion clip.
If the required transformation is too large or the resulting motion
results in collisions the connection fails. Hierarchical displacement
mapping is then used to retarget the input motion to the target foot-
prints. Unfortunately, because a roadmap has to be built in a prepro-
cessing step, this technique only works in fixed environments. Van
Basten et al. [22] present a technique that concatenates individ-
ual foot steps. To reduce the foot placement error, a small pivoting
motion over the stance foot is allowed. a closed-form inverse kine-
matics technique is used to resolve the remaining error, possibly
introducing balancing artifacts. Safonova and Hodgins [21] use a
large (semi-parametric) motion graph that is created by discretely
blending all pairs of motions from a standard motion graph. This
graph is than pruned and searched using a global algorithm. This
technique provides greater accuracy than standard motion graphs
because it allows for the interpolation of two paths (or: motions) in
a motion graph. Like our approach, they are able to generate motion
over a set of constraints (like footplants). However, this technique
is computationally expensive (6-7 minutes for an animation of 15
seconds according to the authors) and is ideally applied in a fixed
environment, making it better suited for offline purposes.

Because we strive for control while retaining naturalness, we
employ an example-based motion parameterization technique. A
common approach is to linearly determine the blend weights in the
abstract parameter space P such as Wiley and Hahn [24]. They cre-
ate a densely sampled parameter space to generate parameterized
motions. In order to retrieve the blend candidates B efficiently, they
resample motions into a grid using a brute force technique. Only ex-
ample motions bounding the grid cell are taken into account. Guo
et al. [7] present a similar technique, albeit on keyframed motions.
In their application, they do not create a grid, but let 4 example
motions span an entire parameter space. Note that, just like Wi-
ley and Hahn [24], O(2d) reference motions are required where d
represents the dimensionality of the parameter space. There are
also techniques that allows one to take more (or all) examples into
account. Rose et al. [19] present the verb and adverb system. Mul-
tiscattered data interpolation is done by determining the weights
using combinations of radial basis functions and hyperplanes. This
interpolation scheme requires O(d) examples to approximate the
baseline approximation (and O(n3) to compute the result, where n
is the number of example motions). This interpolation scheme does
map parameters corresponding to example motions on the exam-
ple motions themselves. This technique has later been improved
by Rose et al. [20] using cardinal basis functions. Mukai and
Kuriyama [16] employ geostatistics-based interpolation techniques
to further improve the accuracy of the resulting motion. All the pre-
vious methods assume that the example motions are semantically
identical (for example, all motions are single reach motions) and
are annotated with key events (such as foot downs). Kovar et al. [9]
propose a k-nearest neighbor interpolation scheme. Given a set of
motion capture data, they automatically retrieve sets of “similar”,



time-aligned motions that form a parameter space.
Unfortunately, because of the non-linearity of the orientation do-

main and the constraints defined by an articulated skeleton consist-
ing of joints and bones, motion blending will not yield a linear pa-
rameterization of the space. In other words, the resulting motion
will not exactly correspond to the desired parameter pq. This holds
for all motion parameterization techniques described above. The
error of these techniques depends on the resolution of the examples
in the parameter space. This error is acceptable in some parameter
domains, such as “happiness”, but not with spatial parameters such
as end-effector positions. Several techniques solve this problem by
explicitly modifying the resulting motion. For example, Park et
al. [17] also use radial basis functions like Rose et al. and force
the trajectory of the root to follow the desired curvature and apply
retargeting to solve foot skating. Grassia [6] transforms the mo-
tion using inverse kinematics to meet the exact constraints. Rose
et al. [20] propose to iteratively adjust the desired position in the
direction of the error vector. Still, exact parameterization cannot
be guaranteed and the precision depends on the resolution of the
created parameter space. Other techniques perform resampling to
reduce the error. For example, Kovar et al. [9] randomly generate
(nearly convex) weights and create pseudo examples by blending
nearby examples with these weights. This technique is also used in
the parametric motion graphs from Heck and Gleicher [8]. Because
we also concatenate parameterized steps, our technique resembles
a parametric motion graph. However, our technique guarantees that
the resulting foot positions will be exactly at the desired position,
in contrast to the standard parametric motion graph and other mo-
tion parameterization techniques. Therefore there is no need for
end-effector trajectory modification.

3 OVERVIEW

Our system can be divided into an offline and online phase. Dur-
ing the offline phase, we create the data structures that allow for
fast motion synthesis. During the online phase, these structures are
queried and the resulting motion is rendered to the character. In this
section we provide an overview of our technique.
The offline phase (Section 4) consists of the following steps:

1. We automatically segment a corpus of motion data consisting
of locomotion animations into clips of individual steps.

2. We represent these steps in a 10-dimensional parameter space
Shigh (see Figure 3).

3. We also represent the same steps in a 3-dimensional parameter
space Slow (see Figure 4) using a Delaunay tetrahedralization
with cross-pointers to corresponding steps in Shigh.

4. We augment every tetrahedron T in the 3-dimensional tetra-
hedralization with a list of possible blend candidates B(T ).

During the online phase (Section 5) the user or footstep planner
supplies a query foot plan. Then, for each query step in this foot
plan:

1. The query step is transformed to the lower-dimensional pa-
rameter representation.

2. We utilize Slow to rapidly find the set of possible blend candi-
dates B.

3. We select the final blend candidates by evaluating the soft
constraints of the blend candidates in the higher-dimensional,
more descriptive, parameter space Shigh.

4. The final blend candidates are blended in the lower-
dimensional space Slow, using a novel interpolation scheme
that yields exact foot placement.

5. The generated step is aligned and fitted to the previous step.

l hip

l ankle

l subtalar l toe

Figure 2: We transform the lower body to the morphology-
independent representation of Kulpa et al.

4 CREATING THE STEP SPACES

In this section, we will elaborate on the offline construction of the
high-dimensional and low-dimensional parameter spaces and how
these are automatically filled given a corpus of motion capture data.
From now on, we will call these parameter spaces step spaces. First,
we extract individual steps from the motion capture data. In order
to extract individual steps, we need to determine the moments the
feet are planted. The moments are detected by evaluating the height
and velocity of the feet [5]. This footstep detector is sufficient for
walking. We consider one step to be the displacement of one foot
and we will elaborate on the exact step definition in the next section.

We represent the lower-body of the stepping motions by the mor-
phology independent representation of Kulpa et al. [12] (see Figure
2). This representation is independent of the anthropometric prop-
erties of the character. The lower body is partially linearized: in-
stead of storing a leg limb as an upper and lower leg segment, the
half plane containing the triangle ∆(hip, knee, ankle) is stored and
hence, the knee is not explicitly present. We define the swivel an-
gle as the rotation of this half plane around the vector l from hip to
ankle. The upper body is represented by a standard skeleton repre-
sentation.

4.1 High-Dimensional Step Space

When the individual steps are segmented, we can retrieve the step
parameters that comprise a 10-dimensional step space Shigh [22].
Figure 3 shows an overview of the parameters. In this example, a
left step, we define the left foot as the swing foot and the right foot
as the supporting foot. In our (planar) representation we consider 6
spatial parameters and 4 temporal parameters.

The spatial parameters are expressed in a coordinate frame
aligned with the supporting foot. The origin of this coordinate
frame coincides with the subtalar of the foot and the y-axis is paral-
lel to the vector from the subtalar to the toe. Every foot step consists
of 2 foot placements f1 and f2. We represent both foot placements
by a local position and orientation (x1,y1,θ1) and (x2,y2,θ2). We
denote the world position of the foot placements of the swing foot
as W ( f1) and W ( f2) and the world position of the supporting foot
as Wsup. The orientation θ of a foot placement is the angle between
the subtalar-toe vector of that placement and the y-axis. Because a
foot placement spans multiple frames, we take the average of these
parameters over the entire stance.

The temporal parameters are the stance durations tstance1 and
tstance2 of both placements, the swing duration tswing and the stance
duration of the supporting foot tsup. Note that the 4 double-headed
arrows corresponding to the temporal parameters depicted in Fig-
ure 3 are only for clarification, but are not situated in the coordinate
system. Now, a step i can be represented in this high-dimensional
space as: Fhigh

i = (x1,y1,x2,y2,θ1,θ2, tstance1 , tstance2 , tswing, tsup).
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Figure 3: We represent a foot step in Shigh using 10 parameters.
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Figure 4: We express the spatial properties of a step in Slow using 3
parameters.

Note that not all parameters are independent. For example, there
is a dependency between the swing duration and the stance duration
of the supporting foot, although they are generally not the same.
Next to that, this space is, in a sense, over-defined: In case of a left
step s1 followed by a right step s2, the foot placement f2 of s1 cor-
responds to the supporting foot placement of s2. Our assumption is
that creating two consecutive steps s1 and s2 where the overlapping
foot placements resemble each other allows for a good transition.

4.2 Low-Dimensional Step Space
We blend animations in a lower-dimensional space (see Figure 4).
In this low-dimensional step space Slow we only consider the posi-
tion of the feet (subtalar). In our problem setting, the positions of
the subtalars are the hard constraints. Again, the positions are ex-
pressed in the coordinate frame centered on the subtalar of the sup-
porting foot. In case of a left step, the (negative) x-axis is aligned
with the vector from the subtalar of the supporting foot to the subta-
lar of the first foot placement f1. In case of a right step, we align the
positive x-axis instead of the negative. The y-axis remains orthog-
onal to the x-axis such that the coordinate system is right-handed.
Now, as can be seen in Figure 4, we can represent the spatial prop-
erty of one step using only 3 parameters: F low

i = (x1,x2,y2)
We transform the steps from Shigh to this representation and keep

track which step in Slow corresponds to Shigh and vice versa. The 3D
representations can then be stored in a Delaunay tetrahedralization,
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Figure 5: A normal step and a cross-step can be identical in Slow.

for which we refer the reader to De Berg et al. [4]. We create 2
tetrahedralizations: one for left steps and one for right steps. This
avoids blending left and right steps when the desired parameters are
close to the origin.

4.3 Augmenting the Low-Dimensional Step Space with
blend candidates

Because of our hybrid blend scheme, on which we will elaborate in
Section 5, we can guarantee that the positional (hard) constraints are
always exactly met, as long as the query motion is inside the convex
hull of the corresponding tetrahedralization in Slow. This allows us
to consider other blend candidates than the vertices (or: example
motions) of the tetrahedron Tcontains that contains the query motion,
and take soft constraints into account.

Simply taking the vertices of Tcontains as blend candidates means
that we are only considering foot positions. Slow is underdefined,
as there is an ambiguous mapping from steps in Slow to the actual
motion. A cross step such as the one depicted in Figure 5(b) has
the same values in Slow as a normal step depicted in Figure 5(a).
Therefore we would like to consider tetrahedra whose vertices (or:
example motions) correspond more to the soft constraints.

The foot positions of these alternative blend candidates might not
be so close to the desired values of the query foot step F low

q , but the
other parameters (such as orientation and stance durations) might
correspond more to the soft constraints in Fhigh

q (the query foot step
represented in Shigh). So, we consider alternative blend candidates
by evaluating their (weighted) distance to Fhigh

q in Shigh, on which
we will elaborate in Section 5.2.2. The only problem that arises is
that the new set of blend candidates need to span a tetrahedron that
actually contains F low

q , otherwise one needs to extrapolate. This
problem can be reformulated in finding the set Btotal(F low

q ) of all
tetrahedra of a point set P consisting of n points that contain the
query step F low

q . A brute-force approach to determine all
(n

4
)

tetra-
hedra in a point set would take O(n4). But even with a more ad-
vanced algorithm this will not be suitable for real-time purposes.
Therefore, during preprocessing, we approximate the possible set of
blend candidates per tetrahedron in Slow. A 2D example is shown
in Figure 6. For each tetrahedron T , we determine its centroid c̄.
From this centroid, we determine the k-nearest neighbors within a
spherical range r. From these nearest vertices, we determine the
set of tetrahedra B(T ) that fully contain T . This set is then stored
with the tetrahedron. We also explicitly add T itself, as this, in
theory, does not need to be part of B(T ). We define a tetrahedron
Tcand ∈B(T ) as blend tetrahedron and its motions s(Tcand) as blend
candidates.

It is easily shown that the resulting set B(T ) will be a subset of
the total set of blend candidates for a query point inside T . Nev-
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Figure 6: Possible blend candidates are determined in the vicinity of
c̄.

ertheless, a large percentage of possible blend candidates is cap-
tured using this heuristic. For efficiency, only tetrahedra that are
fully within a distance of r to the center c̄ of T are taken into ac-
count. This is not a problem, as at least one of the blend candidate
vertices will be distinct from the query point F low

q and will prob-
ably not be useful. A Delaunay tetrahedralization can contain up
to O(n(d3/2e)) tetrahedra [4], each storing a list of possible blend
tetrahedra. Clearly, the size of B(T ) can be reduced by decreasing
k.

Our space of example motions contains several styles of motions
and it can be possible that several styles of motions are blended.
In order to avoid blending of forward and backward motions, we
neglect tetrahedra whose vertices correspond to both forward and
backward stepping. We can detect such cases automatically by eval-
uating the angle between trunk direction and global root direction
of the blend candidates.

Furthermore, in case our motion database contains walking an-
imations with diverse upper body motions we need to evaluate the
resemblance between these upper body motions. In case the upper
body motions are totally different (for example, a hitting motion
versus a clapping motion) we would also like to ignore this tetrahe-
dron. The upper body error du for a tetrahedron T containing mo-
tions s(T ) = sa,sb,sc,sd is determined by a distance metric from
Lee et al. [13]. We determine the total upper-body posture distance
over all frames between every pair of motions. The upper body
error for a tetrahedron T is defined as follows:

du(T ) = ∑
sa,sb∈s(T )×s(T )

(
M

∑
m=1

du(sa,sb,m)) (1)

du(sa,sb,m) = ∑
j∈J

wk

∥∥∥log(q−1
sb,m, j ·qsa,m, j)

∥∥∥2
(2)

where J is the set of upper body joints, wk is a (in our case uni-
form) weight set and qs,m,k is the j’th upper body joint orientation
of frame m of motion s.

5 STEP SYNTHESIS

In this section we will present our technique for online step synthe-
sis. The main outline is that we rapidly find a set of blend candidates
in Slow, select the 4 motions to blend by evaluating them in the more
descriptive parameter space Shigh and determine the blend weights
in Slow. The stepping motions are then blended using the blending
scheme explained in Sections 5.2.1 and 5.2.2. Each generated step-
ping motion is aligned to the previously generated motion. For the
remainder of this section, we assume the existence of a query foot
plan Fq consisting of steps represented in the high-dimensional rep-
resentation depicted in Figure 3 and explained in Section 4.1. Such

a foot plan can come from a foot step planner [5], interactively set
by an animator or extracted from motion capture. In Section 6 we
will show examples of foot plans based on all three.

5.1 Selecting the blend candidates
During online motion synthesis, we generate the steps sequentially.
First, we express each query step in Fq in its lower-dimensional
representation F low

q . We determine the initial blend tetrahedron
Tcontains by doing a point location query in the corresponding De-
launay tetrahedralization D.

From tetrahedron Tcontains, we retrieve the preprocessed list of
blend tetrahedra B. For each tetrahedron Tcand ∈ B(Tcontains), we
evaluate the sum of the distances from its blend candidates (sTcand

1 to
sTcand

4 ) to Fq in the higher-dimensional, more informed, space Shigh.
From B, we select Tblend as follows:

Tblend =
argmin

Tcand ∈ B(T )
(

4

∑
i=1

dw(s
Tcand
i ,Fhigh

q )+wudu(Tcand)) (3)

where dw is a 10D weighted Euclidean distance function in Shigh.
In case the user gives a high weight to the foot position parameters,
the blend tetrahedron Tblend might be the containing tetrahedron
T itself. However, using these techniques, the soft constraints are
taken into account. In case the database contains diverse upper-
body motions, the upper body error can be taken into account via
wu. After the blend tetrahedron, and hence, the 4 example motions,
are selected, we blend them as described in the next section.

5.2 Blending the steps
After we have determined the 4 blend candidates (which we will
denote as B = {b1, . . . ,b4} from now on), we can derive the (con-
vex) blend weights wi = {w1, . . . ,w4} in Slow such that ∑

4
i=1 wibi =

F low
q , 0≤ wi ≤ 1 and ∑

4
i=1 wi = 1.

Because all steps have a similar structure (double stance, swing,
double stance) it is trivial to construct a piecewise linear mapping
between the blend candidates and the resulting motion. The re-
sulting durations of the two double stance and swing periods are
determined by linearly interpolating the durations of the blend can-
didates.

To generate the final stepping animation, we employ a hybrid
blending scheme. For the upper body we use a (standard) interpo-
lation scheme that interpolates the orientations of the joints. For
the lower body we use a novel interpolation scheme that combines
Cartesian (positional) and rotational interpolation. Figure 2 illus-
trates the techniques used for the individual joints. Red joints are
determined by Cartesian interpolation, green joints by rotational in-
terpolation and blue joints are derived from by a combination of
both. Note that this hybrid blend scheme is applied on all frames of
the blend candidates, resulting in a new stepping motion.

5.2.1 Blending Upper Body Motion
To determine the new upper body joints (including hip and root),
we blend all the orientations. The logarithmic map transforms
all quaternions q to a vector representation v. We can then deter-
mine the weighted average of each orientation of joint j: vresult

j =

∑
bi∈B wi ·v j,i and transform the logarithmic map back to the quater-

nion representation. For a more elaborate explanation on blending
in the logarithmic map, we refer the reader to Park et al. [17]. The
position of the root is linearly interpolated.

5.2.2 Blending Lower Body Motion
We use Cartesian interpolation for the subtalar joints: we blend
the positions of the subtalars instead of joint orientations. Blend-
ing is done in the coordinate system of the supporting foot, so that
footskating on the supporting foot is not possible. This will result



in subtalar trajectories whose start and end positions exactly corre-
spond to F low

q .
For the remaining joints of the feet (ankle and toe), we cannot

perform a positional interpolation because this will introduce bone
stretching. Therefore we estimate the positions of the ankle and toe
based on rotational interpolation. We first interpolate the orienta-
tions in the feet, this will result in foot positions that do not coincide
with F low

q . Let prot
ankle, prot

toe , prot
subtalar be the resulting positions of

the ankle, toe and subtalar after (standard) rotational interpolation
of the leg joints as described in the previous section. We then deter-
mine the offset vector verror = psubtalar−prot

subtalar where psubtalar
is the position of the subtalar derived by Cartesian interpolation.
We then determine the positions of the ankle and toe by translat-
ing their positions with verror. This technique attempts to keep the
heading of the feet similar to the result of rotational interpolation.
Note that one can only linearize a posture to a certain degree: inter-
polating the positions of the ankle, subtalar and toe independently
might introduce bone stretching/shrinking in the foot.

After we have derived the positions of the ankles, subtalars and
toes we can derive the position of the knees. Using the law of the
cosines, one can derive the knee angle. We determine the swivel
angle (see Section 4) of the new stepping motion by linear interpo-
lation of the swivel angles of the blend candidates. Using the knee
and swivel angles, it is trivial to derive the knee position. Now,
all joints positions and orientations are determined and the result
is a stepping motion whose start and end position of the subtalars
exactly coincide with the desired positions.

5.3 Step Concatenation

After the step motion is generated, we align the resulting step mo-
tion si such that W ( f1) (world position of the first foot placement
of the swing foot) and Wsup (world position of the supporting foot)
of si coincide with respectively Wsup and W ( f2) of the previously
generated step si−1. In case the previous step is a similar sided
step, we align W ( f1) and Wsup of si with respectively W ( f2) and
Wsup of the previously generated step si−1. Because the soft con-
straints might not have fully been satisfied, it could be possible that
the foot orientation between consecutive steps does not fully match.
Therefore we determine the new orientation of the supporting foot
of si as the average of the final orientation of the swing foot of si−1
and the supporting foot of si. The desired orientation of the foot is
then eased-in during the swing of si−1.

We also need to ensure that the ankle positions are reachable
from the current root position without fully stretching the legs, to
avoid knee popping [11], which occurs in particular when the leg
approaches full extension. So, we set the allowed length of the hip-
ankle vector to α(|hip→ knee|+ |knee→ ankle|). We have found
that a damping factor of α = 0.98 yields good results. Finally, be-
cause we generate steps independently the positional interpolation
might introduce a discontinuity in the root trajectory between steps.
Therefore we apply filtering on the root trajectory. We fit a Bézier
curve to smoothen the root trajectory in a window centered at dou-
ble stances. After we have concatenated the steps, we can transform
the motion back to the standard skeleton representation and render
it on the character.

We concatenate the generated steps during the periods of dou-
ble support. It is tempting to think that one can actually transition
from the current generated step to the next generated step during
the swing, while rooting the foot to the floor, as is done in [5]. Ide-
ally, the previous step s1 is blended out and the previous step of
the next step s2 is blended in. Unfortunately, there does not need
to be a previous step of s2, as s2 is generated by parameterization.
One could also try to generate the previous step of s2 by parame-
terization, but various left and right steps (or no steps at all) might
be blended together. Due to noise in the data the periods of double
support can be as short as a single keyframe. Such a small blending

Figure 7: Standard parameterization techniques yield a high posi-
tional error.

window can result in jerky transition on the upper body. In order
to solve this, we filter the orientations of the upper body using the
efficient filtering technique of Lee et al. [14].

6 RESULTS

In this section we will present some results of our technique. Our
database Shigh consisted of 400 steps sampled at 30 Hz (both the
left and right-sided Slow contained 200 steps). This includes the
mirrored versions of the recorded steps. All recorded motions are
walking motions and the database (5 minutes of motion) consists
of 54% forward, 28% backwards and 18% side and cross stepping
motions. For determining alternative blend candidates using dw, we
use a weight of 1.0 for the spatial parameters (x1, x2, y1, y2), 0.25
for the angular parameters (θ1, θ2) and 0.02 for the temporal pa-
rameters [5]. For upper-body filtering, we use a low-pass filter with
mask [ 1

16 ,
4

16 ,
6
16 ,

4
16 ,

1
16 ] as suggested by [14]. Furthermore, wu is

set to 0, as our database contains only pure walking animations and
k (the number of nearest neighbors) is set to 50. Preprocessing B(T )
took around 1 to 2 hours. All experiments were executed on an Intel
Pentium 3 GHz (dual-core) with 3 GB RAM. We tested on several
foot plans. In the first example, in Figure 8, we synthesized a step-
ping animation over a foot plan determined by the planner from
Egges and Van Basten [5]. Based on the clearance along a path,
the planner determines when to start side stepping. Our character
correctly walks and side steps through the environment containing
several narrow corridors. This foot plan consists of 24 steps and
results in 14 seconds of animation. In the second example, Figure
9, we extracted a foot plan of 12 steps from real recorded motion.
In 9(a) we see the resulting animation. Our system allows for inter-
active editing of foot plans (see Figure 9(b) and 9(c)). The duration
of the resulting motion was 8.2 seconds. The third example (Figure
10) is an animation of 9.0 seconds over a foot plan set by the user.
This foot plan consisted of 12 steps comprising a transition from
forward-to-backward-to-forward walking. More examples can be
seen in the accompanying video.

The application of standard motion parameterization techniques
(linearly determine blend weights and blend orientations accord-
ingly) to the 3-dimensional Slow will result in large discrepancies,
as can be seen in Figure 7. In this figure, the foot placements re-
sulting from the standard parameterization technique are shown as
red rings and clearly show the spatial discrepancy introduced by
this technique. Our method, on the contrary, provides exact foot
placement. On average, online generation of a single step (exclud-
ing rendering, including concatenation to previous step) takes 0.028
seconds (σ = 0.02 seconds, N = 72 steps). The average duration of
a generated step was 0.59 seconds (σ = 0.05). This makes this
technique suitable for real-time applications. With the parameter
set listed above, in 15% of blend candidate selection, an alterna-
tive tetrahedron was choosen. We performed a leave-one-out cross-
validation to validate the effect of selecting alternative blend can-
didates on the soft constraints. We removed one step q from the



Table 1: Leave-one-out cross-validation (error in radians)
Method Containing tetra Alternative blend cand.

av. error θ1 0.3043 0.2924
av. error θ2 0.3200 0.2947

database and generated a step g with the same parameter values
using only the remaining steps in the database. We compared the
foot orientations from the original step q to the generated step g.
The average orientation errors are depicted in Table 1. Here we see
that the orientations of the resulting step g are closer to the orig-
inal when considering alternative blend candidates (instead of us-
ing blend candidates corresponding to the containing tetrahedron).
The total average orientation error (θ1+θ2) decreases 6% when us-
ing alternative blend candidates, which is a significant improvement
(paired T-test, p < 0.02).

7 CONCLUSION AND FUTURE WORK

We have presented an efficient motion synthesis technique that gen-
erates parameterized stepping motions with exact foot placement
using a hybrid interpolation scheme. The accuracy of our technique
is not dependent on the resolution of the example motions in the pa-
rameter space. Therefore we can evaluate other examples than those
in the near vicinity of the query in the parameter space and take soft
constraints, such as timing and foot orientation, into account. This
is not possible in standard techniques where blend candidates need
to be close to the desired parameter value in parameter space. Our
method does not require manual annotation of animations and no
extensive post-processing and end-effector trajectory modification
is needed. This allows for fully automatic generation of highly-
constrained locomotion in real-time.

At this point, our approach can be used for walking motions.
However, we see possibilities for running too, although our local
approach might not be sufficient and one must consider a sequence
of steps. One cannot drastically change speed, curvature or foot
placements in a single step of running. Furthermore, it is inter-
esting to extend this technique for non-planar locomotion (which
would require a collision check of the foot trajectory with the walk-
ing surface) or upper body manipulation. Currently, when a step
is outside the convex hull of the parameter space, the user is just
informed that the step cannot be synthesized. Optionally, the near-
est example is selected from the database and inverse kinematics
is applied. A more advanced constraint editor that provides feed-
back when a desired step is outside the convex hull of the parameter
space would be beneficial. Furthermore, instead of evaluating each
blend candidate individually with respect to the query step, it might
be interesting to evaluate the resulting motion of blending the can-
didates instead. This might give an even better metric for blend
candidate selection. Also, we have observed that limited extrapo-
lation can result in natural motions. Further research is needed to
determine to what extent extrapolation is possible. It would be in-
teresting to compare the results of our technique to other footprint-
driven techniques, such as [5] or [1]. A comparison in terms of both
perceived motion quality (user study) as well as computation time
will be useful contributions.

Although the linearization of the skeletal structure is limited to
specific limbs and can lead to bone stretching/shrinking when not
properly applied, it still is interesting to investigate other, even more
simplified, representations to reduce and simplify the posture space.
We are currently looking into using a linearized representation for
other applications, such as reaching. We believe that geometric pos-
ture representations combined with a hybrid Cartesian interpolation
scheme can be a very powerful tool for efficient synthesis of various
kinds of motion.
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Figure 8: The character walks over a planned footprint avoiding the red obstacles.

(a) (b) (c)

Figure 9: Our technique allows for interactive editing.

Figure 10: The character changes from forward to backwards to forwards walking.


