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Figure 1: Our crowd simulation model, showing different stages of the simulation. From left to right: the agent representation,

calculation of the Voronoi diagram, planning a path towards a goal position, and finally the animation of virtual characters.

Abstract—We present a novel dense crowd simulation method.
In real crowds of high density, people manoeuvring the crowd
need to twist their torso to pass between others. Our proposed
method does not use the traditional disc-shaped agent, but
instead employs capsule-shaped agents, which enables us to plan
such torso orientations. Contrary to other crowd simulation
systems, which often focus on the movement of the entire crowd,
our method distinguishes between active agents that try to
manoeuvre through the crowd, and passive agents that have
no incentive to move. We introduce the concept of a focus
point to influence crowd agent orientation. Recorded data from
real human crowds are used for validation, which shows that
our proposed model produces equivalent paths for 85% of the
validation set. Furthermore, we present a character animation
technique that uses the results from our crowd model to generate
torso-twisting and side-stepping characters.

Index Terms—crowd simulation, crowd animation, dense
crowds, agent representation, holonomic motion.

I. INTRODUCTION

THE shapes most often used to represent characters in

crowd simulations are points and discs. In sparse crowd

simulations, such a simple shape works well; the chosen

representation does not have a large impact on the behaviour,

as there is ample space around the agents. However, when

the agents move very close to each other, motion follows

shape. A common motion in dense crowds is the twisting

of the torso, to squeeze through an opening between people.

This is commonly seen at band performances, busy cocktail

parties, or crammed lifts. Points and discs are ill suited for such

situations, as the rotational symmetry prohibits planning of

such twist. Instead, in this paper, we investigate an agent rep-

resentation based on the torso. By employing a representation

that is closer to the human shape, we expect to obtain more

realistic human-like motions than disc-based crowd simulation

methods.
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Main contribution: In this article we introduce the Torso

Crowd model for dense crowd manoeuvring, based on a novel

capsule-shaped agent representation modelling the characters’

torsos (see Figure 1). Contrary to other crowd simulation

systems, which often focus on the movement of the entire

crowd, our method distinguishes between passive agents that

have no incentive to move from their present location, and

active agents that try to manoeuvre through the crowd towards

a goal position. We introduce the concept of a focus point for

crowd agents, which allows for more control and more real-

istic, social and complex behaviour. Furthermore, we validate

the active agent behaviour using ground truth data, obtained

by motion capturing a real crowd.

We use the term agent to indicate an abstract crowd agent

such as a point, disc, or capsule. The term character designates

a humanoid virtual character, whereas the term people refers

to real humans. We mostly consider the motions of the upper

body, i.e. the torso. The lower body is only considered at the

final visualization step, where humanoid body animation is

generated. Torso twist is not defined as a rotation relative to the

lower body, but as a rotation relative to the agent’s trajectory.

Organization: The rest of the paper is organized as

follows. Section II discusses related work. The overall setting

of our crowd model is described in Section III, followed

by a description of the design of active (Section IV) and

passive (Section V) agents. We show our results, compare

with a cylinder-based simulation method and with ground truth

obtained from motion capture, and describe several simulated

scenarios in Section VII. Section VIII describes the animation

technique used to display the moving crowd agents as walking

humanoid figures. Section IX discusses future work, and

concludes the article. The accompanying video can be found

online at http://stuvel.eu/video/torso-crowds.

http://stuvel.eu/video/torso-crowds
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II. RELATED WORK

For a general overview of crowd simulation techniques and

topics, we refer to the books by Thalmann and Musse [1], and

Pelechano et al. [2]. In the remainder of this section, we focus

on work that is related to the simulation of dense crowds.

There are many approaches to simulating crowds, each

leading to different behaviour. Flow-based methods are macro-

scopic, focusing on the crowd as a whole. They support very

large crowds, as high-level coordination prevents obstructions.

Common examples are fluid dynamics [3] or gas kinetics [4],

which can be applied to particle-based crowds, and are

particularly suitable for high-density simulations. However,

such approaches model a global optimum, whereas humans

generally behave less optimally and can even get stuck in

very dense situations. Cellular automaton approaches such

as the works by Chenney [5] and Alizadeh [6] discretize

floor space into cells, where every character can occupy

exactly one cell, and vice versa. Although such approaches are

computationally inexpensive and thus support large crowds,

they also result in even spacing between agents, which will

appear unnatural when densities are high. Both flow-based

and cellular automaton systems do not consider how people

move, and thus generally do not result in believable human

crowds. Agent-based methods employing social forces, such

as the HiDAC model [7], or planning in velocity space, such

as the RVO model [8] generally allow for high-density crowds

while supporting individual behaviour of agents, and can be

extended to support physical interaction with obstacles and the

environment [9]. These approaches avoid agent collisions at all

costs, even to the point where all agents stop moving. In con-

trast, in actual dense crowds people frequently bump into each

other. This is reflected in our method, as our agents prioritize

motion over collision avoidance. Our model switches agents to

the RVO steering method when they are in low-density areas;

such use of multiple models of agent representation for crowd

navigation is also performed by Kapadia et al. [10].

Common representations used in path planning and crowd

simulation are points [3], [4] and discs [8], [11] Discs are the

most commonly used representation due to their computational

simplicity, and have proven to be suitable to simulate abstract

(i.e. non-humanoid) crowds of any density. However, when

using such a simple, rotationally symmetric representation,

it becomes hard to animate more detailed human motion.

This results in artefacts such as interpenetration of characters,

unnatural distances between characters, and a lack of torso

rotations. Furthermore, it has been shown that a disc does

not accurately represent the actual volume occupied by the

character in 3D space [12]. In Section VII we show the

importance of the agent shape in dense crowds, not just for

realism of the motions, but also to support higher densities

without getting stuck. Singh et al. use multiple discs [13] to

represent an agent, and plan their motion using a footstep

model. This approach allows for denser crowds than body-

enclosing discs, and offers realistic walking animations. Their

footstep model was made more robust by Berseth et al. [14],

who also show the simulation of a densely packed crowd

of agents. However, due to the lack of animated humanoid

characters, it is hard to draw conclusions as to the realism of

the result. The works by Van Basten et al. [15] and Beacco et

al. [16] can be used to animate such humanoid characters.

Finally, some crowd animation methods directly use anima-

tion data to drive the characters [17], [18], also producing re-

alistically animated characters. However, due to the high-level

planning of these methods, planning the motion of individuals,

such as specific characters moving towards their respective

goal positions, is much harder to do. The computer model

SIMULEX [19] uses three circles to approximate the top view

human shape: a larger one for the head, and two smaller

ones for the shoulders. SIMULEX does not consider torso

orientation when planning; it just uses the three circles to more

accurately perform collision detection between pedestrians.

Rotating polygonal shapes are supported by the Reciprocally-

rotating Velocity Obstacles method by Giese et al. [20]. Even

though the rotations are considered when planning motions,

the planner does not aim at the simulation of humanoid

behaviour. As a result, the agents translate at an angle in

cases where a human would simply walk straight. To our

knowledge, our method is the first to present the capsule as

agent representation in crowd simulations.

Our method employs Voronoi diagrams for planning mo-

tions through the crowd. The edges of such a diagram represent

the path of maximum clearance between agents; intuitively

this corresponds well with the desire of people to minimize

perceived effort when walking [21], [22]. Stüvel et al. [23]

showed that in a dense crowd people indeed move along such

paths. The Explicit Corridor Map method by Geraerts [24]

uses city-scale generalized Voronoi diagrams for path plan-

ning. Sud et al. [25] also employ generalized Voronoi diagrams

for path planning; contrary to our approach, they limit the use

of this diagram to static obstacles only, and do not apply it for

agent avoidance. Sud et al. [26] perform path planning based

on 1st and 2nd order Voronoi diagrams, containing information

about respectively the closest agent and the closest pair of

agents. They employ a path scoring technique slightly resem-

bling our proposed method. While their article promotes speed

of computation, our approach focuses on a richer character

representation, and validation against real crowd data.

III. SETTING AND PROBLEM FORMULATION

Our crowd simulation system considers the torso as the

main moving element. The algorithm is based on the findings

by Stüvel et al. [23], [27], who observed and recorded dense

crowd behaviour. In their experiment, participants were given

the task of manoeuvring through the crowd to predefined

points. The movement of the crowd was recorded using a

motion capture system, and these data serve as a ground truth

for the behaviour of people actively manoeuvring through

dense crowds. We refer to Stüvel et al. [23] for the details of

the experiment. Our Torso Crowd model is designed to support

the observed motions of the crowd-escaping participants, and

believable simulation of essentially stationary people.

When observing dense crowds in general, and the previously

mentioned recordings in specific, it is clear that torso rotations

are critical when manoeuvring through a dense crowd. To
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support such rotations, our agents extend the common disc-

based crowd agents, as shown in Figure 2. The common agent

is defined as a point with a radius r′; our agent model extends

this point to a line segment of length ℓ, with a (probably

different) radius r. This extension eliminates the rotational

symmetry, thereby making it possible to plan torso rotations.

People standing still in a crowd behave differently from

people trying to reach a certain goal position. In order to

model these differences in behaviour, two types of agents are

used in our crowd simulation technique. Active agents move

to reach their goal position, whereas passive agents mostly

stay in place, only moving to make room for other agents.

Section IV describes the behaviour of the active agents, while

Section V describes the passive agents. Different aspects of

the environment, such as walls, doors, and other obstacles, are

handled by our method in a unified way; this is described in

Section VI. The goals of the agents are determined by a high-

level planner, which is scenario-dependent and not described

further in this article. When an active agent reaches its goal,

depending on the intended scenario, the agent optionally

switches to passive behaviour. Similarly, when the high-level

planner provides a passive agent with a new goal position, that

agent will switch to active behaviour.

The crowd consists of N agents Ai, i ∈ [1, . . . , N ]. Each

agent Ai in reference placement is defined as the Minkowski

sum of a line segment of length ℓi centred around the

origin, and a disc of radius ri. The placement of an agent is

represented by a pair (ai, θi), where ai and θi are the agent’s

position and orientation. For ease of discussion, we denote the

direction of the forward-facing normal of the torso of agent

Ai in placement (ai, θi) by ni, the continuous set of points

covered by its central axis by si, and its linear velocity vector

as ȧi. These concepts will be detailed in the following sections.

IV. ACTIVE AGENTS

From observation of the previously mentioned ground truth

data and dense crowds in general, we formulate the following

assumptions as basis for our active agent model.

• People tend to choose a comfortable path, that is, max-

imize clearance, by avoiding areas of very high density.

Occasionally, a less comfortable path may be chosen,

when the discomfort is only temporary and the path leads

to an area of larger clearance.

• People tend to minimize perceived energy use [21], and

thus prefer short, straight paths.

ri

ℓi

ni
r′

Figure 2: Two types of crowd agent representation. On the left

a common crowd agent: a point with a radius. On the right

our crowd agent: a line segment with a radius.

Figure 3: Top-down view of a real, motion captured crowd,

with the generalized Voronoi diagram in white lines.

• People generally move in the direction of their goal, but

divert from the shortest path when it is obstructed or when

an alternative path is significantly more comfortable.

• Averaging at 0.4 m/sec, the traversing speed through a

dense crowd is relatively low [27]. This, combined with

the dynamic nature of crowds and possibly a lack of

overview of the situation, makes long-distance planning

of exact paths to the goal impractical.

The generalized Voronoi diagram (GVD) is a partitioning

of the plane. In our crowd model, a cell is defined for each

agent, being the set of all points that is closest to that agent.

The GVD is represented as a pair {V,E} of vertices V and

edges E ⊂ V ×V that represent the boundaries of those cells,

where the edges are arcs (possibly with zero curvature, i.e. line

segments). Every point on an edge or a vertex is equidistant to

its neighbouring crowd agents. These edges form the medial

axis between the agents, and thus represent a more or less

comfortable path that maximizes local clearance. Stüvel et

al. [23] have observed that people in dense crowds indeed

follow such paths (also see Figure 3).

In real situations, observing surrounding people, planning a

path, and manoeuvring through the crowd, are intertwined in

a continuous process. However, people are not continually re-

considering all their options all the time, but rather make more

or less discrete decisions. Our agents reflect this behaviour by

replanning their actions at a moderate rate.

Similar to Sud et al. [28], all active agents use the same

GVD for planning their motion. The passive agents use a

slightly altered GVD, as described in Section V. As a result,

the GVD needs to be calculated at most twice per simulation

update, regardless of the crowd size and frequency of planning.

For simplicity of computation, we use the central axes si to

calculate the GVD, rather than the agent shapes themselves.

Due to the nature of the capsule, where the distance from the

axis to the edge of the shape is constant, the approximated

GVD is very similar to the exact GVD (see Figure 4); the

distances between the corresponding edges are in the order of

magnitude of the differences between the agent radii. Such

small differences, in our case in the order of centimetres
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Figure 4: The exact Generalized Voronoi Diagram of the

capsules (black) and the approximated diagram of their cen-

tral axes (white). The distance between corresponding edges

depend on the difference in capsule radius.

[23], are unlikely to cause noticeable changes in the crowd’s

behaviour.

Our Torso Crowd method is suitable for simulating dense

crowd manoeuvring, and based on experimental observations

of such behaviour. However, in situations where the crowd is

not dense, we have no proof of validity. As a consequence,

our implementation switches to the RVO2 crowd simulation

algorithm [8] when agents move out of the dense crowd,

using a circular agent shape that is large enough to encompass

the agent and its personal space. This can be seen in the

accompanying video, when agents walk out of a lift and into

an empty hallway. We reuse the definition of dense situations

by Stüvel et al. [23], namely those situations where there is

at least three humans per square metre, as measured by the

area of their Voronoi cell. Since we can measure this density

on a per-agent basis, this decision is also made for each agent

individually.

In the next subsections, we discuss the planning and execu-

tion of the agent’s movement. Firstly, similar to real people,

a desired position is planned, taking into account potential

torso twists needed to reach that position. Since the available

clearance at the planned position poses a bound on the torso

orientation, this orientation is planned in a second step.

A. Limited-horizon path planning

To plan the movement of an active agent, the following steps

are taken:

1) Find paths by exploring the vicinity in the GVD of the

Voronoi cell containing the agent.

2) Calculate a score for each path, and determine the best-

scoring path.

3) Calculate the desired agent orientation at the start of the

path, accounting for available clearance.

The GVD provides proximity information in a natural way;

the cell of the active agent represents its proximity, and the

outgoing edges of that cell’s vertices form paths between

agents in its direct vicinity. The search is initialized by taking

these outgoing edges, i.e. the edges that only have a single

vertex incident to the active agent’s Voronoi cell. This set

is then extended, parametrized by given values for Euclidean

Figure 5: Candidate paths in white lines, with the best-scoring

path as a thick, red line. The circled edge was shorter than

Hǫ. The paths are extended to the agent position. The goal

position is bottom left outside the frame. Note that the paths

along curved Voronoi edges are just drawn as straight line

segments for simplicity.

distances HD and Hǫ, and edge count limit HC , as follows:

the outgoing edges are followed depth-first until either distance

HD, or edge count limit HC is reached. For the latter limit,

edges shorter than Hǫ are ignored (as circled in Figure 5).

Such short edges occur, for example, when four agents are

almost equidistant, and the clearance between the agents would

likely be perceived as a single space. Hence, such edges are

unlikely to correspond to human perception. Even though this

approach could theoretically lead to a path consisting of an

arbitrarily large number of edges, such a situation does not

occur in dense crowds when using crowd agents of more or

less realistic human-like sizes. The resulting path P consists

of a sequence of GVD edges e ∈ P ; following the path should

bring the agent closer to its goal.

After a set of candidate paths is found, each path is given a

score. The agent will attempt to use the path with the highest

score. The composite score function S(i, P ) takes agent Ai

and path P . It enforces the behaviour of real people in dense

crowds, based on the observations by Stüvel et al. [23]. As all

score functions should be balanced to make a final decision as

to the best possible path, they are combined into a weighted

sum:

S(i, P ) = wgSg(i, P ) + wcSc(P ) + wlSl(P ) + wmSm(i, P )

where Sg(i, P ), Sc(P ), Sl(P ) and Sm(i, P ) are score func-

tions, and wg , wc, wl and wm are weights given to these

sub-scores. Values for these weights are determined in Sec-

tion VII-A. In the following descriptions of each score func-

tion, p0 and pf respectively indicate the initial and final vertex

positions of path P . Note that the path’s final point pf does

not necessarily correspond to the agent’s goal position gi, due

to the limit on the path length described earlier.
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Score function Sg(i, P ) drives the agent towards its goal.

It measures how well the path leads to the goal position gi,

expressing the distance, from the end of the path to the goal,

as a ratio of the total Euclidean distance to the goal. This

normalization ensures that the resulting score is independent

of the absolute distance to the goal:

Sg(i, P ) = 1−
|gi − pf |

|gi − ai|

Score function Sc(P ) measures the clearance radius along

the path, ensuring that the agent prefers comfortable routes

with large clearances. It consists of two components. The first

component stems from the moderate rate replanning principle.

It assumes that a person plans a motion towards a more

spacious area; when this area is reached, a new decision can be

made. The second component prefers motion along paths with

as much clearance as possible. The GVD structure enables

efficient calculation of clearance radius C(x) at any point

x ∈ R
2.

Sc(P ) = wF
c C(pf ) + wA

c

1

|P |

∫

x∈P

C(x) dx

where |P | indicates the total arc length of P , x ∈ P are the

collection of all points along path P , and wF
c and wA

c are

weights for respectively the final and the average clearance of

the path. Due to implementation details of our GVD library,

we only had access to the minimal clearance of edges, and

approximated the integral using discretized summation. This

score function also serves as a term to minimize the relative

rotation of the torso with respect to the motion trajectory, due

to the way the clearance information is used to plan torso

orientations (see Section IV-B)

The conservation of energy can be broken down into two

components: the minimization of the distance travelled, and

the effort required to travel that distance. Score function Sl(P )
models the first component, and measures path length. This

function combines with Sg(i, P ) into the preference of short

paths leading to the goal.

Sl(P ) = −
∑

e∈P

|e|

Score function Sm(i, P ) represents the second component of

energy conservation, by penalizing changes in momentum, i.e.

sharp turns. Since we can safely assume that the mass of the

agent is constant, any change in momentum is explained by

a change (in the direction of) the velocity vector, which in

turn can be modelled by the cosine similarity of the current

velocity and the direction towards the path:

Sm(i, P ) =
ȧi · e0
|ȧi||e0|

where e0 = p0 − ai, the vector connecting the agent to the

starting point of the path.

A more elaborate alternative for Sm(i, P ) could calculate

the weighted integral of the curvature along e0 and P , with the

weight inversely proportional to the distance from the agent.

This would take the curvature of the entire path into account,

emphasizing more immediate momentum changes. However,

our proposed approach is simpler, and seems to be sufficient

in practice. Furthermore, due to the agent replanning while it

is en route to its goal, effectively the curvature of the entire

path is taken into account.

B. Torso rotation planning

Once the best path P has been chosen, which determines the

next torso position, the torso orientation To is determined. For

this we use the torso normal ni of agent Ai. Torso orientation

To consists of two components: heading Th and torso twist Tt.

The first component, Th, represents a common nonholonomic

walking motion along the start of the path. Its computation is

trivial and not described here. The second component, torso

twist Tt, adjusts for the minimal clearance along the start of

the path. The clearance at later parts of the path is of less

importance for the current torso twist planning, due to the

moderate-rate replanning principle. The first edge of the path

lies between two neighbouring agents, and ends at a point

of local maximum clearance behind those two agents. It is

this part of the path that is used for the planning of the torso

twist. The clearance at a point indicates the distance from that

point to the nearest agent capsule. To maximize the time for

the agent to smoothly change its torso orientation towards the

desired twist, we calculate the minimal clearance c along the

first edge of path P . The torso twist Tt can then be expressed

in radians as

Tt =











0 : c− ri ≥ wi

cos−1

(

c−ri
wi

)

: 0 < c− ri < wi

π
2

: c− ri ≤ 0

where wi = ℓi/2 + ri is the half-width of the capsule. This

results in two possible orientations, both of which will fit

the available clearance equally well: Th + Tt and Th − Tt

The choice for the final orientation is based on the findings

by Stüvel et al. [27]. They observe that, while manoeuvring

through a dense crowd, people tend to aim their torso normal

towards their goal position. The absolute angle between the

torso normal and the vector to their goal is limited to 90o for

90% of the time, and never more than 120o. Consequently, we

choose To = Th ± Tt such that this angle is minimized. Once

the desired position p0 and orientation To have been calcu-

lated, each agent employs proportional-derivative controllers

to steer towards the planned configuration.

So far we have discussed the general approach for an active

agent. Based on observations from real crowds, we deviate

from this approach when a character starts to move towards

a goal. Stüvel et al. [23] observed that, before they start

manoeuvring, people orient their torso towards their goal.

Similar behaviour is incorporated into our crowd model. When

an agent becomes active and starts planning its movements, it

performs the same planning steps as described in the previous

subsections. However, it discards the planned position p0,

and rotates on the spot towards the planned orientation To.

Subsequent planning steps are performed as described earlier.

V. PASSIVE AGENTS

In this section, we discuss the behaviour of passive crowd

agents, which, in contrast to active agents, do not have an
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explicit target to navigate to. We consider two sometimes

contradictory motivations for their placement: finding local

comfort, and rotation towards a focus point. Our passive

agents locally optimize their placement, making themselves

as comfortable as possible, i.e. maximize the clearance around

them, given the constraints of their immediate surroundings.

The translation tS to reach a more comfortable placement

is described in Section V-A. When the geometry of the

environment and the configuration of the crowd allow for it, a

trade-off is made between rotating to a comfortable orientation

and a rotation towards a focus point. This can be the centre

of a chatting group of people, the charismatic front man of a

performing band, or simply the floor number display of the lift.

To our knowledge, we are the first to use such a focus point in

a crowd simulation system. The rotation φS from the current

to the desired orientation is described in Section V-B. Passive

members of a crowd temporarily accept a less comfortable

position in order to make way for someone else to pass; this

avoidance by translating (tA) and rotating (φA) is described

in Section V-C. In Section V-D we show how these desires

are combined into the agent’s motion.

A. Space finding

Passive agents try to coarsely maintain their position. For

example, even when a lift is crowded, the door is open, and

outside the lift is a plethora of space, agents waiting in the lift

will remain in that lift. Manoeuvring to a different area, such

as stepping out of the lift, is considered active behaviour, and

is described in the previous section. We use walls and doors

(see Section VI) to delineate areas in the environment. To

restrict the space finding algorithm to the agents’ current area,

our passive agents consider all doors as closed, regardless of

their actual state. However, the agents do search for a better

place to stand in their direct vicinity; this is what we call space

finding behaviour. This results in a translation vector tS from

their current position to a more spacious position. Effectively

it is a combination of comfort optimization and avoidance of

passive agents.

Whether the space finding algorithm is engaged depends

on the space around the agents. We assume that our passive

agents like to stand in a spot where there is enough space

surrounding them. When that is the case, i.e. the distance to

the nearest neighbouring agent or obstacle is larger than a

certain threshold, they remain stationary, even though there

may be even more space available to them; the agent is marked

as happy with its current placement, and will not engage the

space finding algorithm (so tS = 0). This threshold can be

configured individually for each agent, and can be a function

of culture, scenario, or the geometry of the surroundings.

In tighter situations, our passive agents move to maximize

their comfort. To obtain nearby candidate positions of maximal

comfort, agents consider points of maximum clearance be-

tween their surrounding neighbours. By definition, such points

correspond with vertices of a Generalized Voronoi Diagram

(GVD, see Section IV) of those neighbours. Such a local

Generalized Voronoi Diagram Li of agent Ai is the GVD

defined by Ni, where Ni is the set of neighbouring agents and

Figure 6: Example of a local Generalized Voronoi Diagram

(GVD), with points of maximal local clearance, in orange. The

GVD of the crowd is shown in white. The features that define

the local GVD are shown in magenta. The dashed circle shows

the clearance of the agent.

obstacles of agent Ai. Ni can be efficiently extracted from the

GVD of the entire crowd, by iterating over the edges of the

cell containing Ai, and taking the agents or obstacles on the

opposite side of the edges. Note that agent Ai itself is not

included in Li (see Figure 6). The vertices of Li correspond

to local clearance maxima, and thus potentially comfortable

positions for the agent to move to.

People try not to spend too much energy [21], and will

accept a marginally more cramped situation when walking

to a better spot would take a significant effort. We use the

following energy minimization function to balance the gain

(more available space) with the expended energy (the distance

to travel to that space). All vertices vj ∈ Li are considered

potential better positions, and are given an energy cost

E(ai,vj) =
|vj − ai|

C(vj)− C(ai)

vd = argmin
vj∈Li

E(ai,vj)

tS = vd − ai

where C(x) indicates the clearance around x; vd denotes the

vertex with the lowest energy cost, and determines the agent’s

space finding translation vector tS . This scoring is efficient;

we have found that, in practice, 89% of the time Li contains

no more than three vertices, with an average of 2.7 vertices.

B. Orientation finding

When agents are squeezed into a small area, they rotate

themselves to fit the available space. However, if the con-

straints allow for it, the agents focus on a given point (a

performing band on a stage, floor number display of a lift,

etc.). This results in a rotation φS from the current orientation

of the agent towards a desired orientation. The focus point

is environment- and scenario-dependent, and can of course

change over time and be different for each person or agent. It

is denoted as fi for agent Ai. The accompanying video shows

the effect of this focus point. A group of agents have a focus

point in the centre, and the video demonstrates the effect of
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increased density on this group: the group stays together, even

though the focus point has no direct influence on the position

of the agents (see Figure 10).

In the remainder of this section, p is the passive agent’s

index number, so ap indicates its position. The angle between

the agent’s torso normal np (see Section III) and the vector to

its focus point fp is defined as

αf = ∠(fp − ap,np) ,

where ∠(x,y) indicates the signed angle between two vectors

on the interval (−π, π].

When marked as happy with their current placement (which

depends on the available clearance, as described in Sec-

tion V-A), our crowd agents rotate such that their torso normal

points towards their focus point. In this case, we take φS = αf .

The shape of the available space is the dominant factor in

someone’s orientation when that space is tight; one rotates to

fit the little space available. The narrower the space, the less

important any focus point becomes. To include this behaviour

in our model, we inspect the shape of the agent’s Voronoi

cell. Since this cell contains all points that are closer to the

agent than to any other agent, it is a good model for their

available space. The width of the cell is defined as the minimal

distance between two parallel lines that enclose the cell. The

direction of these lines are a common measure for the oblong

direction of the cell. However, this direction is not stable under

small variations in agent configurations, so we use a more

elaborate approach. To obtain a vector that indicates the overall

orientation of the space, a Principal Component Analysis

(PCA) [29] is applied. Such an analysis is applied to a point

cloud, to determine its dominant direction. Since it cannot

be applied to continuous shapes, intuitively we could sample

the interior of the Voronoi cell to obtain such a point cloud.

However, to increase computational performance, we limit this

approach to the sampled cell edges; considering the results this

is sufficient. The result of the PCA consists the eigenvectors

and eigenvalues of a covariance matrix; when ordered from

large to small by their absolute eigenvalues c1 and c2, the

eigenvectors indicate the first and second principal components

C1 and C2. In the remainder of this section, we assume that

the absolute eigenvalues are ordered by magnitude, i.e. c1
belongs to eigenvector C1.

When the Voronoi cell of a passive agent has no clear

orientation, the eigenvectors hold little information, and the

eigenvalues will be more or less equal. In this case, the

agent rotates towards the focus point. When the shape of

the cell is elongated, and thus relevant for the orientation of

the crowd agent, the first principal component aligns with the

cell’s shape. This relevance is indicated by a large difference

between the first and second eigenvalue of the covariance

matrix, i.e. c1−c2 ≥ ǫ2 (ǫ1 will be introduced later as a lower

bound). In this case, there are two possible orientations for the

agent, in which the agent’s central axis sp aligns with either

C1 or −C1; the agent chooses the orientation that minimizes

αf . If there is no focus point, αf is not defined, and the agent

chooses the orientation that requires the smallest rotation from

its current orientation.

αc = ∠(±C1, sp)

To ensure smooth transition between αc and αf , we blend

between them depending on the eigenvalue difference:

φS =







αc if ǫ2 ≤c1 − c2
I(αc, αf , t) if ǫ1 ≤c1 − c2< ǫ2
αf if c1 − c2< ǫ1

where ǫ1 < ǫ2, I(αc, αf , t) indicates angular linear interpola-

tion along the shortest arc for t = (c1 − ǫ1)/(ǫ1 − ǫ2). In our

implementation, we use ǫ1 = 0.015 and ǫ2 = 0.045.

C. Avoidance of active agents

The behaviour of passive and active agents is quite different.

Passive agents move slower, and try to divide the available

space between them. Active agents move faster (when allowed

by the constrained environment), and, more importantly, try to

reach a specific goal. These differences are also reflected in the

way that passive agents perform agent avoidance. This section

describes how they avoid active agents1.

Since far away agents have negligible chance of colliding

with the passive agent, only those nearby are avoided. Of

the active agents that are within an avoidance distance di
of the passive agent, measuring distance between the agents’

capsules, the nearest K are considered for avoidance. In our

implementation we used di = 0.4ri and K = 4. The avoidance

distance di can be varied to model observant (larger) or

unaware (smaller) behaviour, and is not necessarily related

to the agent’s radius. In the following description of the

avoidance behaviour, we denote the index of the active agent

that is to be avoided as i ∈ {i1, . . . , iK}, and the index of the

passive agent as p. Agents that move away from the avoiding

agent, i.e. where (ai−ap) · ȧi > 0, are safely ignored, as their

motion is sufficient to avoid any collisions.

The avoidance behaviour consists of two components, a

rotation φA and a translation tA. The passive agent rotates to

minimize its width in the active agent’s direction of movement,

and it translates to move out of the way. The active agent’s

position ai and velocity vector ȧi are used to determine a

first-order approximation of its future trajectory.

Passive agent Ap rotates to reduce its width perpendicular

to ȧi, allowing Ai as much space as possible to pass. φA is

chosen such that the central axis sp aligns with either ȧi or

−ȧi, depending on which produces the smallest rotation:

φi = ∠ (±ȧi, sp)

The final rotation φA is the sum of the individual rotations φi.

This summation is very simple; we are interested in a more

refined approach, such as computing the rotation to avoid the

one agent that is most likely to collide, based on its position

and velocity. The avoidance of other agents could then be

performed once that agent has been avoided. The investigation

of more elaborate methods is left as future work.

1Avoidance of passive agents is handled by the space-finding algorithm,
which is described in Section V-A.
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Figure 7: Active agent avoidance; the passive agent Ap

(green) will move to avoid the active agent Ai (cyan). Arrow

ti indicates the resulting avoidance vector.

To step out of the way of agent Ai, the passive agent trans-

lates perpendicular to the velocity vector ȧi (see Figure 7).

For the active agent, we determine the line through ai and

oriented along ȧi. For the passive agent, we determine the line

orthogonal to ȧi and intersecting ap. The intersection point xi

of those lines determines translation vector ti:

ti =
1

δi

ap − xi

|ap − xi|

with dampening factor δi > 0. The dampening factor can be

agent-specific, to allow for different personality traits. A high

dampening factor will make the agent slower to respond than

a low dampening factor. In the accompanying video we used

δi = 200 for all agents. The final agent avoidance translation

vector tA is the sum of individual translations ti.

D. Turning desire into action

The previous subsections described methods to obtain a

vector towards more space tS , a rotation φS towards a focus

point or to align with the available space, and translation tA
and rotation φA to avoid active agents. This section describes

how our method selects which translation and rotation to use

to produce the agent’s motion.

The space finding translation vector tS is only applied when

certain conditions are met. Firstly, based on the principle of en-

ergy minimization, we assume that people accept a marginally

worse situation when manoeuvring into a better spot would use

significantly more effort than standing still. In our algorithm,

the clearance at the found point must be significantly better

than the agent’s current situation; we use a threshold value

of 125% of the agent’s current clearance. Not only does this

produce more natural results (an irregular distribution of free

space among the crowd), it also prevents oscillation between

points of similar clearance. Secondly, when making space for

someone to pass (see Section V-C), people generally accept

a worse situation, as it will only be temporarily. However,

people try to move towards an open space if one is available

and can be reached while still allowing someone to pass,

since this will make it both easier for the passing person

and more comfortable for the avoiding person. To model this,

space finding vector tS is only applied when agent avoidance

and space finding result in a translation in roughly the same

direction; in other words, when the dot product tS · tA > 0.

When these are more or less opposite, only the agent avoidance

is performed. The same approach is taken for φS and φA; if

both rotate in the same direction, they are combined, otherwise

only φA is applied.

p0 = ap + tA +

{

tS if tS · tA > 0
0 otherwise

To = θp + φA +

{

φS if φAφS > 0
0 otherwise

where θp is the passive agent’s current orientation, and p0 and

To are respectively the planned position and torso orientation

as described in Section IV. The movement of the agent is

controlled in the same way as described in that section.

VI. WALLS, DOORS, AND OTHER OBSTACLES

In order to model realistic scenarios, our method supports

walls, doors and polygonal obstacles. To integrate these into

the crowd behaviour, they are all modelled as line segments

and included as additional sites in the generalized Voronoi

diagram (GVD). As a result, the GVD contains line segment

sites for agents, walls, doors and obstacles. All these are

interpreted by the crowd agents as impenetrable obstacles.

Doors are modelled as special wall segments that can be

enabled when the door is closed, and disabled when the door

is opened. As described in Section V-A, doors are interpreted

differently by active and passive crowd members. When a door

is open, its line segment simply is not inserted into the active

agents’ GVD at the next simulation update. The GVD for the

passive agents always inserts door line segments, to ensure that

the space finding algorithm does not cross area boundaries.

In real life, people anticipate the movement of others.

Anticipation in crowd simulation has been studied before

[30]–[32]; in these works, crowd agents predict other agents’

movements, and adapt their own motion to avoid collisions.

Our crowd model takes the opposite approach; our active

agents place information in the environment to notify passive

agents of their intentions, similar to the approach by Yeh et al.

[33]. As a real-life example of the intended behaviour, consider

a person entering a lift; people appear to mentally model the

space required for that person, and make space accordingly.

Since the final orientation of the person is not known a-priori,

a point would be sufficient to model this. In our simulation,

active agents insert point obstacles in the passive GVD, at their

goal position gi. As a result, the passive agents make space

around this position, sooner than the avoidance behaviour

would. This is only applicable in situations where the active

agent’s behaviour is predictable, such as when entering or

exiting a lift or bus, which is why it is an optional feature

of our crowd simulation method.

VII. RESULTS

In this section, we validate our Torso Crowd model against

a real crowd, in order to find values for parameters that

result in human-like behaviour. Furthermore, we investigate
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our model by looking at several scenarios. We also compare

our model with a disc-based crowd simulation: Reciprocal

Velocity Obstacles [8].

A. Validation and parameter optimization using a real crowd

To validate our crowd model behaviour, we used motion

capture data of a real crowd [23]. This data set contains the

torso width and thickness of each participant, and a recording

of their locations and torso orientations during each of 47

trials. These recorded motions represent human behaviour in

a real situation, and thus form suitable ground truth for our

parameter optimization and model verification. We do note that

the recordings were performed in a controlled environment,

and thus may not be a faithful representation of day to day

scenarios. We leave evaluation using real crowds, for example

using video analysis, to future work. The data set is used to

validate the behaviour of the active agents, and the passive

agents in the interior of the crowd. In the experiment, the

active participants had the concrete, reasonably realistic task

of manoeuvring through a crowd to a given point. The rest

of the crowd had to stand still in a dense configuration,

which was necessarily synthetic for the participants at the

edge of the crowd due to the set-up of the experiment. To

compare the behaviour of the active participants with our

crowd simulation system, we look at topological equivalence,

rather than Euclidean distance between paths, as the exact

positions of the paths are highly dependent on the behaviour

of the passive crowd members. The parameters for the passive

agents are simpler and more intuitive than those for the active

agents, and were chosen based on visual inspection of the

simulation results of the scenarios described in Section VII-B.

Our crowd model uses a number of parameters that de-

termine the behaviour of the active agents, as described in

Section III. These parameters, with their optimized values, are

shown in Table I. To optimize these parameters, we used the

following approach:

1) Conversion: The motion capture data is converted to

our abstract agent representation, enabling us to input

captured situations into our crowd simulation method.

2) Test sets: We choose N random frames from the

recorded motion capture data. We ensure that each of

the chosen frames represents a different situation. The

set of frames is separated into two distinct, equally sized,

randomly chosen subsets T for parameter tweaking and

V for verification.

3) Parameter tweaking: For each frame in T , the choices

of the path planning algorithm are compared with the

choices of the participant. We adjust parameters and

repeat the comparison, until either all choices made by

the path planner are equal to the choices made by the

participants, or no more improvements can be made.

When the planned path passes between the same agents

as the participant’s motion, they are considered equal.

4) Verification: For each frame in V , the same type of com-

parison is performed, as a verification of the parameters.

We also measure the difference in planned and recorded

torso twist.

Table I: The path planner parameters obtained from our

comparison with our ground truth data. All values were

obtained by manual optimization.

category parameter value parameter value

Planner horizon HC 3 HD 1.50 m
Hǫ 0.05 m

Score function weights wc 2.30 wg 1.41
wl 0.21 wm 1.00

Clearance weights w
F
c 0.1 w

A
c 0.9

We used N = 80 to tweak and verify our parameters.

Little adjustment was needed during the tweaking phase,

resulting in the parameters displayed in Table I. To prevent

over-fitting to our motion capture data, we also validated

against the behaviour observed in the simulations seen in the

accompanying video. During the verification phase, the path

planner chose a path that was topologically equivalent to the

participants in 85% of the cases. Figure 8a shows examples of

such correctly planned paths. In four of the six cases where

the planner diverted from the recorded data, the planned path

was equally plausible (see Figure 8b). In the recordings of

the other two cases, at the exact frame used for validation,

the participant shifted weight from one foot to the other while

otherwise stationary, which resulted in a large change in the

instantaneous momentum vector and thus in a different path

being chosen (see Figure 8c); within 1/30 second after the test

frame, the planner chose the same path as the participant in

both cases. Of course this is not an issue when using simulated

data, as our system does not model this weight shifting.

The verification of our model also includes a comparison

between the planned and recorded torso orientations for the

34 test cases where the predicted path was topologically

equivalent to the path of the recorded participant. To remove

the influence of local path variations, we compare the torso

twists, since these are relative to the agent’s and participant’s

own paths. The twist is defined as the angle between the

torso normal and the torso’s instantaneous velocity vector (as

described in Section IV-B). For each verification frame, our

Torso Crowd method is used to plan the agent’s next short-

term target position p0 and torso twist Tt. The recording is

then forwarded to the time where the participant reaches p0,

after which his/her torso twist T ′
t is determined. The error is

then expressed as the signed difference between the twists:

E = Tt − T ′
t where the sign of error E indicates whether our

planner over-estimates (positive) or under-estimates (negative)

the required twist. In 10 cases we under-estimated the required

twist. We classify one of those cases as outlier; it showed a

−42o difference due to the participant moving at that angle

even though it was not needed given the available space. In

the other under-estimated cases the average error was small

at −12o, and the error was never more than −16o. In 25

of the 34 cases, we over-estimated the required twist. This

is easily explained by the fact that the plan is based on the

GVD, which represents the current situation. In the recorded

data, it is clear to see that the passive participants make space

for the active participant, resulting in more available space,

hence less torso twist is required. The average error when over-

estimating was 22o. The largest error in the predicted twist was
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(a) We consider the blue and red paths as topologically equal, since

they choose the same route between the same agents.

(b) We consider those two paths as topologically unequal, since they

choose a different route towards the goal, but equally plausible routes

towards the goal position.

(c) In the left image, the planner took an unnatural decision, due to

noise in the recorded velocity vector. However, 1/60 second later (right

image) the planner made the same choice as the participant.

Figure 8: Comparison between the planned paths (thick red

line) and the recorded motion capture data (thin blue line).

76o. However, in this case the planned global torso orientation

was reached within 0.8 seconds after reaching the planned

position. Note that we compare the torsos at the moment in

time where the distance between the recorded participant and

the planned position is minimal. In 16 of the 34 test cases,

either the planned torso twist Tt or the global torso orientation

To is approached (within a 2o error margin) within 0.5 seconds

from that moment in time. This indicates that the recorded

participant rotates at a slightly different rate, but still assumes

the planned configuration shortly before or after. The average

of the absolute error is quite small at 19o, and the median

of 16o indicates that more than half of the predictions have a

smaller-than-average error. We can conclude that our method

for simulating active agents corresponds well with the ground

truth data.

The avoidance behaviour of the passive participants was

also investigated, to confirm that they show the alignment

behaviour we model in Section V-C. Since our aim is the

simulation of dense crowds, we discarded the participants

at the edge of the crowd, and limited this analysis to those

that are in a dense situation as per the metric described by

Stüvel et al. [23]. Their continuous motion was segmented

into avoidance actions, which are defined as a period in which

the participant shows a translation and/or rotation in order

to make way for the active participant. In our data set, all

avoidance actions consisted of at least a translation (average

0.09 m, σ = 0.07 m), which allowed us to find the peak in

translation speed, and use the local minima around this peak to

define the start and end timekeys of each avoidance action. At

both timekeys, we measured the angle between the passive

participant’s torso segment sp and the active participant’s

velocity vector ȧi. By analysing 94 avoidance actions, we

found that at the start of the avoidance action, the average

angle was 42o (σ = 25o), and at the end timekey it was

30o (σ = 22o). A paired-samples T-test on the angles shows

that this is a strong significant difference (p < 0.0001),
indicating that there is indeed a trend to align with the active

agent’s velocity vector. The specific values of the observed

averages are of relative importance, as we did not account

for any anticipation or other temporal effects. Doing so may

produce stronger results, which is left for future research. The

simulated avoidance behaviour is parametrized, and can be

adjusted to mimic these findings.

B. Examples and comparison with disc-based simulation

We have modelled several scenarios to test our crowd

simulation method. As we focus on situations where a large

part of the crowd stands still, typical tests where the entire

crowd moves do not suffice. Furthermore, in dense crowds

people often bump into each other, so a benchmarking method

that penalizes collisions, such as SteerBench [34], will produce

unrealistic scores. Instead, we have chosen to use a lift and a

hallway to model crowded spaces. All scenarios are simulated

at real-time on a single CPU core of a modern PC (Intel Core

i7 at 4 GHz). With 44 agents, the Hallway scenario ran at 23

frames per second; note that the crowd simulation algorithm

was implemented in Python, and the exact Voronoi diagram

was computed on the same CPU core using the VRONI library

[35]; a GPU-based implementation of the GVD algorithm [36]

and an optimized implementation in C of the crowd simulation

algorithm will result in a better performance; we leave this for

future work. The scenarios are shown in the accompanying

video. For each scenario, we first show the simulated agents,

and then animated characters that follow the motions of those

agents. The set of parameters obtained in Section VII-A was

used in all scenarios, with the exception of the clearance

parameter wc of the active agents. We use wc = −0.5 when

entering the densely crowded lift to encourage the agents to

move from the low-density hallway into the high-density lift.

Small lift: In this scenario, the lift visits various floors,

and on each floor agents get in or out of the lift (see Figure 9).

This scenario shows the typical division of the available space

seen in lifts: one person by itself stands more or less in the

middle of the lift, while the space gets divided when more
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Figure 9: Stills of the “small lift” scenario. Three agents enter the lift, while the others make space.

people enter. While waiting for their floor, the agents turn

towards a common focus point: the floor indicator panel above

the door. When agents leave the lift, the remaining space is

used by the remaining agents. Note that, mimicking real life,

the space is not optimally divided amongst the agents. Instead,

agents around a gap, where an agent stood before leaving the

lift, benefit most from the newly available space. The effect

of the insertion of the immediate goal of active agents, as

described in Section VI, can clearly be seen when passive

agents make space as an active agent enters the lift.

Large lift: This scenario demonstrates what happens

when a group of agents share a focus point, and the density

of the crowd increases. The three green agents (see Figure 10)

share a focus point that is positioned at the centroid of their

positions. The other agents in the simulation do not have a

focus point. The behaviour of the agents entering the lift is

not necessarily natural, since half of them have been scripted to

move to the back of the lift. This behaviour is more disruptive

to the agents already present, and thus forms a more interesting

scenario. Even though the focus point has no direct influence

on the agents positions, the three agents stay together.

Hallway: In this scenario we show a character ma-

noeuvring through a larger crowd in a hallway. We use this

scenario to compare the behaviour of our Torso Crowd model

with a widely accepted crowd simulation model: Reciprocal

Velocity Obstacles [8] (RVO). This comparison does not aim

specifically at RVO; we just use RVO as a good example of

a disc-based crowd simulation model. In this comparison, the

Torso Crowd agents share the same focus point, out of view on

the right-hand side. One agent tries to manoeuvre towards its

goal position, while the remainder of the crowd is stationary;

those agents have a zero preferred velocity.

Since RVO models agents as discs, we need to convert

our capsule representation. We keep in mind that the agents

actually represent humanoid shapes; making the RVO agents

narrower will result in many undetected intersections. There-

fore, the radius is chosen such that the disc encloses the torso

capsule, as shown in Figure 11b. The blue line shows how far

the agent was able to move: in such a dense, stationary crowd,

the disc-shaped agents are too big to manoeuvre, while this

density is not a problem for Torso Crowds (see Figure 11a).

One of the underlying issues is that RVO agents only make

space to avoid collisions. When the active agent slows down

to avoid a collision, the surrounding agents only move with

half the speed necessary to avoid the collision. This forces

the active agent to slow down even more, finally forcing it

Table II: Agent diameters used in the comparative scenario, in

metres. For capsule agents the diameter is defined as 2ri+ ℓi,
whereas for disc agents this is 2ri.

Simulation shape min max mean

Torso Crowds capsule 0.382 0.504 0.443
Regular RVO disc 0.382 0.504 0.443
Same-area RVO disc 0.280 0.399 0.345

to stand stand still. Its velocity vector then becomes zero and

holds no information, and the agents in its surroundings will

no longer move.

To give the RVO agents more space, we reduce the agent

radii, such that the surface area of the agent’s ground pro-

jection is equal to that of the capsule. This makes the RVO

agents narrower but still thicker than the Torso Crowd agents,

and results in an equal ground coverage percentage for RVO

and Torso Crowds. The RVO agent can then successfully

navigate the crowd, at the expense of intersections between

the characters. Figure 11c shows this situation, with red

capsules to visualize the character torsos. Statistics on our

choice of agent sizes are shown in Table II; the average width

of 0.44 metres matches the average torso width (measured

shoulder to shoulder) reported by Stüvel et al. [23]. We can

further increase the crowd density; even the smaller RVO

agents move slowly, and eventually do not find a path to

the goal (Figure 12b). Our Torso Crowd model still handles

this situation, and allows the agent to manoeuvre to its goal

position (Figure 12a).

We can observe more differences. The Torso Crowd agent

takes a longer path through the crowd, as it has been con-

figured to avoid areas of low clearance (i.e. agents that stand

close together). The RVO agent tries to maintain the shortest

path by preferring velocities directly towards the goal position.

Another difference is that RVO agents are limited to nonholo-

nomic behaviour; an agent cannot take a step backward or

to the side to make room for a passing agent, resulting in

unrealistic instantaneous rotations when a human character is

animated in its place. Where the passive Torso Crowd agents

fill up the space in the wake of the blue agent to make

themselves more comfortable, the green RVO agents remain

stationary. These results show that the disc shape is not suitable

for the simulation of dense crowds. We can also conclude that

our Torso Crowd model shows a wider range of motions.
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Figure 10: Stills of the “large lift” scenario. The three green agents have a common focus point (the red dot).

VIII. CHARACTER ANIMATION

In order to display a humanoid crowd, the motions of the

crowd agents need to be mapped to humanoid characters.

This poses an under-specified problem. Since only the torso

motion is simulated, the lower body orientation needs to be

reconstructed before further body animation is possible. In our

method, we first describe our lower body estimation method,

and then the proposed skeletal animation method. This section

briefly describes our approach; for further details we refer to

the work by Stüvel [37].

The lower body orientation is estimated based on two

observations. Firstly, when manoeuvring, the lower body is

oriented more or less in the same direction as the torso, and

slightly turned towards the direction of motion. Secondly,

the lower body cannot instantly change its orientation. By

applying smoothing and computing the angle between the

smoothed torso orientation and the trajectory of the motion

we determine the lower body orientation.

Once the lower body orientation is determined, we can

animate the skeletal structure that determines the character’s

pose. A commonly used technique for crowd animation is the

use of a single walk cycle to animate characters at various

speeds, where the animation playback rate depends on each

character’s walking speed. Such an approach is simple to

implement, but does not support holonomic motion (such

as side-stepping). Furthermore, it results in a direct depen-

dency between walking speed and cadence (steps per minute).

However, when people change their walking speed, both the

cadence and stride length change [38]. This change in stride

length cannot be captured in a single walk cycle, producing

unnatural results. To address these issues, the basis for our

animation technique is two sets of ten gender-specific walk

cycles, consisting of an idle animation (0.00 m/sec), eight

slow (0.45 m/sec) walk animations in different directions,

and a faster (1.00 m/sec) straight forward walk. The eight

slow animations consist of straight forward and backward

walking, left and right sidestepping, and diagonal steps in

four directions. The speed of 0.45 m/sec was chosen for

those animations as it was found to be the average speed

when manoeuvring through a dense crowd [27]. To produce a

character that walks at the correct speed, the joint angles of the

animations are blended using weights that depend on the speed

of the crowd agent and the lower body orientation. Constraints

are placed on the spine bones to incrementally rotate the torso

to produce the required torso twists. An example is shown in

Figure 13.

IX. CONCLUSION

In this article we have introduced a novel crowd simulation

method, based on the manoeuvring of a number of people in

otherwise stationary dense crowds. By extending the common

disc-based agent representation to capsules, we are able to plan

upper body twisting based on available clearance. Such torso

twisting is critical for believable dense crowd manoeuvring.

Our method has been validated against data obtained from

real crowd behaviour. The active agent behaviour matches

paths chosen by humans in 85% of the cases, and produces

different but equally plausible paths in 10% of the cases.

The method’s parameter values were manually optimized; it

would be interesting to investigate automatic parameter tuning

such as proposed by Wolinski et al. [39] and Berseth et

al. [40]. Even though we used a simplified Voronoi diagram,

the resulting behaviour is a close match to the ground truth

(as shown in Section VII-A). The majority of our validation

focused on the behaviour of active agents; further comparison,

with different ground truth data, could improve realism of

the passive crowd members as well, and could strengthen

our design decisions, such as the space-finding behaviour, the

assumption that passive agents do not move to different rooms,

and show what role focus points play in real crowds.

Regardless of the method to obtain the parameters, it is

likely that their scope is limited to high-density situations.

Since the planning of torso twist is no longer a necessity in

lower-density crowds, our crowd simulation system switches

between our proposed method and a different agent-based

method aimed at regular locomotion, depending on the density

of the crowd. Alternatively, our system could be extended

to handle lower densities, by employing density-dependent

parameter values; this should be relatively straight-forward,

since our density metric is agent-oriented, and the parameters

are already adjustable for each agent. It would also be inter-

esting to add velocity-based path planning to our method; for

example, the change of clearance over time could be used to

prefer small-but-growing openings in the crowd over larger-

but-shrinking ones.

All parameters in our model can be personalized per agent,

for example by sampling them from a given random distribu-

tion or by adding noise. More human-like behaviour could be

introduced, such as hesitation when one is unsure about the

path to take; hesitation could be simulated in our model when

different paths have similar scores. Such diversification of the

crowd simulation is left for future work.
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(a) Torso Crowd finds a path to the goal.

(b) RVO with the same width as the capsules does not find a path to

the goal.

(c) RVO with the same surface area as the capsules to allow manoeu-

vring.

Figure 11: Motion paths of a Torso Crowd agent, and RVO

approaches. The RVO agents are displayed with a capsule

shape overlay, to visualize intersections between agent-driven

humanoid characters.

The passive agents use a generalized Voronoi diagram to

find comfortable places to stand. By definition, such a diagram

is symmetric, in that there is no distinction between agents and

walls, or the front or rear of agents. This symmetry results in

artefacts, such as agents standing too far away from walls.

A possible solution may be found in a multiplicatively or

additively weighted generalized Voronoi diagram [41], which

might also be useful to model the asymmetrical nature of

people’ personal space [42]. However, since there are no

suitable, robust implementations available, we are unable to

implement such an approach at this time, and leave this to

future work.

In our scenarios, each active agent was appointed a fixed,

(a) Torso Crowd finds a path to the goal.

(b) RVO with the smaller agents, with the same surface area as the

capsules, does not find a path to the goal.

Figure 12: Motion paths through an even denser crowd. RVO

does not find a path to the goal, while Torso Crowds does.

The RVO agents are displayed with a capsule shape over-

lay, to visualize intersections between agent-driven humanoid

characters.

scenario-specific goal position. When that goal is reached, the

agent switches to passive behaviour. Due to the dynamic nature

of the crowd, the scripted goal position may not be the most

comfortable (see Section V-A), and the agent will move to

a desirable point after reaching the goal. When approaching

the goal, the active agent could use a local GVD to find a

comfortable position in the goal area, and actively move there

before switching to passive behaviour.

We have used an animation system that shows walking

characters in a crowd using the motions obtained from the

simulation. Our system uses a kinematic approach, hence it

does not respond to inter-character collisions. Due to the den-

sity of the crowd, however, such collisions are likely to occur.

We are currently investigating a method employing physics-

based characters that follows our torso planning method [43].

Such a system would be able to respond to collisions in a

physically correct way, and be used to plan lower-body motion.

Another interesting way to extend our model is based on

the observation that in dense crowds people often use their

arms for navigation. Not only are they used to physically

make space, but also for notification as to the intent to pass

between people, and as a tactile addition to visual information

about one’s neighbours in the crowd. A different approach to

improving the result of the animation system would be the

integration of a footstep-based method, such as described by
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Figure 13: A crowd of animated, human characters in a lift.

The man in the blue clothing is the active character, whose

torso twist is clearly visible. The path is shown in blue.

Singh et al. [13] and subsequently improved by Berseth et al.

[14]; we expect that planning both footstep positions and torso

orientations may lead to more natural results. It would also be

interesting to extend motion editing methods [44]–[46] such

that torso orientations are taken into account.

Further research could extend the Torso Crowd model to

allow for a crowd of mostly active agents. It would be

interesting to add a velocity component similar to RVO to the

planner. Furthermore, the Torso Crowd representation could

be employed to reduce the energy needed to manoeuvre a

crowd for other crowd simulations. For example, our passive

agents anticipate the motions of the active agents, and move

aside and twist their torso to make space. Such behaviour can

also be observed in less dense crowds, in cases where making

twisting the torso is not a geometric necessity for someone to

pass, but does provide them with a more energy-efficient path.

This happens, for example, when making space for someone

running towards a train. This shows that torso planning is not

limited to dense crowds.
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[30] S. Paris, J. Pettré, and S. Donikian, “Pedestrian reactive navigation for

crowd simulation : a predictive approach,” Computer Graphics Forum,

Eurographics 2007, pp. 665–674, 2007.
[31] I. Karamouzas, P. Heil, P. van Beek, and M. Overmars, “A predictive

collision avoidance model for pedestrian simulation,” in Motion in

Games. Springer Berlin Heidelberg, 2009, vol. 5884, pp. 41–52.
[32] Y. Suma, D. Yanagisawa, and K. Nishinari, “Anticipation effect in

pedestrian dynamics: modeling and experiments,” Physica A: Statistical

Mechanics and its Applications, vol. 391, no. 1-2, pp. 248–263, 2012.
[33] H. Yeh, S. Curtis, S. Patil, J. van den Berg, D. Manocha, and

M. Lin, “Composite agents,” in Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS Symposium on Computer Animation, 2008.
[34] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “Steerbench: a

benchmark suite for evaluating steering behaviors,” Computer Animation

and Virtual Worlds, vol. 20, no. 5-6, pp. 533–548, 2009.
[35] M. Held, “VRONI: an engineering approach to the reliable and effi-

cient computation of voronoi diagrams of points and line segments,”
Computational Geometry, vol. 18, no. 2, pp. 95–123, 2001.

[36] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha, “Interactive 3D
distance field computation using linear factorization,” in Proceedings of

the Symposium on Interactive 3D Graphics and Games, 2006.
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