
Stride Space: Humanoid walking
animation interpolation using 3D

Delaunay databases

Sybren A. Stüvel - Utrecht University
3371506

Supervisor: Dr. Ir. Arjan Egges
Thesis number: INF/SCR-09-63

June 2010



Sybren A. Stüvel

Acknowledgements

I would like to thank all the people that have made this research possible. Special
thanks go to Dr. Ir. Arjan Egges, who has introduced me to motion capture
techniques, given me a scientific basis in the field of computer animation, and
provided the concept for this research. I thank MSc. Ben van Basten for his
help and interesting discussions, and Drs. Arno Kamphuis for his critical and
sometimes different point of view.

Additionally I would like to thank Ton Rosendaal and the Blender community
for carefully and energetically fathering and developing Blender, which I have
used extensively throughout my research. And Albert Heijn for their excellent
Perla Dark Roast beans.

Finally I thank my girlfriend, parents and friends for their inspiration, support,
enthusiasm and fondness for elegance.

Typesetting in LATEX, TEXlive 2009-7

Editing in VIM 7.2.330

c©Copyright 2010 by Sybren A. Stüvel

2 Stride Space interpolation



Sybren A. Stüvel

Abstract

Precise control over foot placement during character locomotion is crucial to
avoid obstacle collision and to produce natural results. We present a new exact
parameterization technique for generating humanoid walking animations. Given
a database of pre-recorded motion capture data we generate new animations us-
ing a spanning neighbours search in a Delaunay database and interpolating those
neighbours. Our approach results in exact foot placement while soft constraints
such as timing are also taken in account, due to a novel blend candidates selec-
tion strategy. We show that this can be done very efficiently as to be compatible
with real-time applications.

Keywords: computer animation, generation, interpolation, real-time, walk

Stride Space interpolation 3



Sybren A. Stüvel

4 Stride Space interpolation



Contents

1 Introduction 7

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9

2.1 Animation techniques . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Manipulating motion capture data . . . . . . . . . . . . . . . . . 10

2.3 Interpolation of animations . . . . . . . . . . . . . . . . . . . . . 11

2.4 Research goals & motivation . . . . . . . . . . . . . . . . . . . . . 13

3 Design and Implementation 15

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Choice of parameter space . . . . . . . . . . . . . . . . . . . . . . 17

3.3 The Canonical Step . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Creating the Stride Space 21

4.1 Step segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 The Delaunay Databases . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Database analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Synthesizing the animation 27

5.1 Determining blend candidates . . . . . . . . . . . . . . . . . . . . 27

5.2 Determining weights for interpolation . . . . . . . . . . . . . . . 30

5.3 Rotational interpolation . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Positional interpolation . . . . . . . . . . . . . . . . . . . . . . . 34

Stride Space interpolation 5



CONTENTS Sybren A. Stüvel

5.5 Time scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.6 Foot fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.7 Concatenation of steps . . . . . . . . . . . . . . . . . . . . . . . . 38

5.8 Upper body motions . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Body representation 41

6.1 Linearized representation . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Classical skeleton representation . . . . . . . . . . . . . . . . . . 43

7 Results 47

7.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Upper body movement . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4 Blend candidate selection . . . . . . . . . . . . . . . . . . . . . . 52

8 Conclusion and future work 55

8.1 Terrain height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.2 Blend candidate selection . . . . . . . . . . . . . . . . . . . . . . 56

8.3 Extrapolation outside convex hull . . . . . . . . . . . . . . . . . . 57

8.4 Naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59

A The algorithm in pseudocode 63

A.1 The Database class . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2 The Generator class . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.3 The FootFitter class . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.4 The Blender class . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Stride Space interpolation



CHAPTER 1

Introduction

Computer animation plays a very important role in contemporary games and
simulations. The more realistic the environment, the higher the expectations of
the realism of animation. Motion capture provides a way of recording natural
motions, but by itself it is not suitable for interactive environments as using the
motion capture data in itself can be compared to playing back a recording. To
interpret, adjust and merge the data such that it can be used in an interactive
setting a different approach is required.

We present a novel method for generating humanoid walking animations based
on example motions from a corpus of pre-recorded motion capture data. The
motion clips are interpolated in such a way that the result more accurately
matches a query than any single one of the original animations. More specifi-
cally, we look at a way to create an animation of a walking humanoid based on
a list of foot plant positions.

The foot plant positions are assumed to correspond to more or less natural
walking motions. They can be manually entered, which is tedious work, or
automatically generated based on a desired path and information about the
environment. The latter method is being researched in our department at this
moment. Based on results from biomechanics, step sizes and foot orientations
can be estimated and incorporated in the planner, see for example Boulic et
al.[BTT90]

Chapter 2 describes the related work, and establishes a context for our research.
Chapter 3 shows the design overview. The offline and online processes are
described in chapters 4 and 5. We show our body representation in chapter 6.
Results are presented in chapter 7. The conclusion and future work are described
in chapters 8 and 8.

Stride Space interpolation 7



1.1. NOTATION Sybren A. Stüvel

Development was done in Visual C++ using both Visual Studio 2005 and Eclipse
3.5. We used the Real-time AGS Game Engine (RAGE) as the animation gen-
eration and real-time visualisation system. Blender was used to analyze and
render the skeletal animations.

1.1 Notation

For series of variables, say {xA, xB , . . . , xZ}, we use a non-standard but quite
self-explanatory shorthand notation xA···Z . The same is used for numerical
indices such as y1···4 ≡ {y1, y2, y3, y4}.

8 Stride Space interpolation



CHAPTER 2

Related Work

We humans are very well trained in recognising human motion. From afar we
can recognise a friend by the way she moves, even before we can recognise any
other identifying traits. This makes it a tough challenge for animators to create
realistic and identifiable walking animations. This challenge of course applies
to human animators as well as their automated cousins.

2.1 Animation techniques

Three classes of animation techniques can be identified. Procedural techniques
create locomotion based on biomechanical and empirical concepts. A second
approach to generating human walking animations are physical simulations. The
success of such an approach depends on the correctness of the physical model
and the understanding of the human anatomy. Besides having a physical model,
the character’s motions needs to be governed by a control algorithm.

Hodgins et al.[HWBO95] describe such an algorithm. Their approach is more
generic than our approach as they can animate running, jumping and cycling
while we only animate walking. However, their approach is based on repetitive
motion whereas we assume no repetition. Another important difference is that
their method is aimed towards animating athletes, i.e. people that are physically
fit and perform the required actions near-perfectly. Our technique is also usable
for non-perfect walking animations such as limping or being drunk.

To work around the difficulty of manually creating a suitable control algorithm,
it can be learned instead using neural networks and evolutionary program-
ming[AF09]. The resulting algorithms are unfortunately not yet stable enough;

Stride Space interpolation 9



2.2. MANIPULATING MOTION CAPTURE DATA Sybren A. Stüvel

after a limited walking distance of a few meters the character topples.

One of the earliest techniques that use an explicit foot plan is by Van de
Panne[vdP97]. He uses a kinematic model of the walking entity to generate
the animation. The foot plan is used to create a path for the centre of mass,
after which the path and foot plant positions are used to generate a walking
motion.

A third class is comprised by example-based techniques. Rose et al.[RCB98]
and Unuma et al.[UAT95] use interpolation to combine example motions into
synthesized motions. Rose et al. use a high-dimensional interpolation space that
contains not only dimensions such as “walking” or “running” but also emotional
state such as “happy” or “clueless”. Unuma et al. also use “emotion-based”
animation techniques, but use Fourier analysis on repetitive motions. The focus
of both papers is on generating realistic and controllable human motion while
requiring little example motions. This is different from our approach, as we
focus on positional accuracy of the feet as well as retaining the characteristics
of the original motion. We feel that physical correctness is important for a
virtual environment, as a character floating with their feet and hands half-way
between the steps of a ladder can instantly destroy the feeling of presence and
the suspension of disbelief, regardless of the emotional state expressed by the
character’s motion.

2.2 Manipulating motion capture data

The process of motion capture starts by suiting up an actor in a special suit.
This suit has highly reflective markers attached to it, which are tracked by an
array of cameras. Those cameras are positioned in such a way that ideally every
marker can be tracked by at least two cameras at any point in time, regardless
of the position and pose of the actor. The markers are recorded at 100 frames
per second, and when the system is properly calibrated with sub-millimetre
precision. After the markers have been recorded and labeled they are mapped
onto a virtual humanoid figure. This figure then drives a skeleton, of which the
movements are stored. When referring to “motion capture data” we refer to
such motion capture-based skeletal animations.

One of the problems of controlling motion capture data stems from the many
degrees of freedom in the human skeleton. An animator may be able to control

10 Stride Space interpolation



Sybren A. Stüvel CHAPTER 2. RELATED WORK

all these degrees of freedom separately, but this easily leads to unnatural motion.
To aid in this motion graphs[KGP02] are often used to enhance the motion
capture data with a graph describing which animations can be blended, and
at which frames this blend can happen. This technique allows, for example,
to smoothly transition between different walking animations. The downside of
motion graphs are that often manual labour is required, modifying the motion
capture data to ensure that blends are possible where needed. Another problem
is that the blending can only occur at the blending points defined in the graph,
introducing artificial movement when interactive control is needed; the current
animation will keep playing until a suitable blend can be performed, even if
this conflicts with the user’s input. To ameliorate this the graph could be
enhanced to contain more blend points, but this in itself can result in worsened
performance.

Choi et al.[CLS03] sample the collision-free physical space and build a roadmap
of possible animations that can let a character walk from one sample point to
the other. This method is limited to static environments. Instead of adapting
entire walking motions, we manipulate smaller clips of single step animations;
every step can be generated for the then-current state of the environment.

A method quite similar to ours is the Step Space method by Van Basten
et al.[BPE10]. They too use motion capture data segmented into individual
steps. A 10-dimensional parameter space is used to find the step animation
that most closely resembles the query step. It is then aligned and fitted onto
the previous step animation, producing a walk. The feet are then optionally
moved onto the query positions by applying inverse kinematics. The animation
is time-warped to attain natural pelvis speeds. Instead of finding the step that
resembles the query the most, we find four of such steps, in such a way that
in our parameter space the query is embedded in the space spanned by those
steps.

2.3 Interpolation of animations

In our experiment “StepSpace Interpolation”[Stü09] we have looked at inter-
polation of humanoid step animations. This paper builds on that experiment
and refines the technique. The goal of our algorithm is to generate a walking
animation based on foot plant positions and motion capture clips. We generate

Stride Space interpolation 11



2.3. INTERPOLATION OF ANIMATIONS Sybren A. Stüvel

new animations by interpolating between up to four existing animations per
step, and concatenating the result.

In the aforementioned experiment we keyframed the motion of the human body.
An animation consists of a mapping of time codes to keyframes. Each keyframe
Ki consists of orientations for each joint, expressed as quaternions. We showed
that interpolating between keyframes by interpolating the quaternions, using
weights obtained from a linear parameter space, does not yield a desirable ani-
mation. The animation does show a walking humanoid, but the feet do not end
up in the correct positions.

Park et al.[PSS02] present a method of generating locomotion based on motion
blending. Globally their method is very similar to ours, in that they too use
motions scattered in parameter space, which they interpolate to produce the
final animations. Their parameters are style, speed and turning angle. They
blend the joint orientations and root position based on weights in this parameter
space. Precise foot placement is not possible. Heck et al.[HG07] generate a
variety of animations, such as walking, cartwheeling and punching. They create
a highly structured parameterized motion graph to blend between motions. It is
possible to use the technique to have a character reach a certain position, such
as a square on a grid, but it does not provide foot placement.

Inverse kinematics is a common way to correct the feet. However, care has to be
taken by applying such a correction as it can lead to imbalance[Pee09]; this may
happen when the feet are both moved in the same direction, for instance (see
figure 2.1). Correcting for this imbalance is not a trivial matter, and requires
considerable computation. Our technique remains balanced by interpolating
between balanced animations.

There are obviously more ways to correct the animation after interpolation.
However, we suspect that by storing the motion data in a more linearized re-
presentation we can interpolate the animation and ensure the feet end up at
the correct positions, without requiring corrections afterwards. Interpolation
based on joint positions instead of orientations would guarantee this. It has
been used by Guo et al. to interpolate based on a low-dimensional (D ≤ 3)
parameter space[GR96]. Positional interpolation of all joints is known to cause
bone stretching.

It may be beneficial to create motions using a simplified representation of the
skeleton, rather than the high-DoF human skeleton. Monzani et al.[MBBT00]

12 Stride Space interpolation



Sybren A. Stüvel CHAPTER 2. RELATED WORK

Figure 2.1: Findings by P.W.A.M. Peeters[Pee09]. The left image shows the
result of an interpolation method. The character is balanced but the feet are
not in the correct position. After moving the feet using inverse kinematics the
character is no longer balanced (right image).

and Popović et al.[PW99] use a lower-DoF skeleton and recalculate the re-
maining DoF. Kulpa et al.[KMA03] use a representation of the human body
that introduces “limbs of variable length”, a way of representing the body in
a morphology-independent model, which we use to avert the problem of bone
stretching.

2.4 Research goals & motivation

We try to solve the stepping stone problem by interpolation of example motions:

Given a set of query foot placements, called a foot plan, that con-
tains temporal and spatial constraints, generate an animation that
adheres to these constraints.

Stride Space interpolation 13



2.4. RESEARCH GOALS & MOTIVATION Sybren A. Stüvel

In our problem setting, we consider the feet positions as hard constraints and
feet orientation and temporal constraints as soft constraints. As we have de-
scribed in the previous sections, not many techniques allow exact foot placement.
We propose a novel parameterization technique that efficiently generates exact
results.

We chose an example based method, as such a method allows for subtleties in
the motion that are very difficult to obtain using other methods. An actor can
be easily instructed by a director to walk in a way that could be difficult to
quantify for use in a physical model or procedural technique, such as “airy”,
“child-like” or “sneaky”.

14 Stride Space interpolation



CHAPTER 3

Design and Implementation

This chapter describes the design and implementation details of our algorithm.
It starts with an explanation of the choice of parameter space and the way we
normalize foot steps. We then continue to the selection of blend candidates,
calculation of the weights, the interpolation and the concatenation of steps.

A footstep is considered as one foot staying on the ground while the other foot
moves from one position on the ground to another position on the ground. The
foot that remains on the ground is called the supporting foot, and the other
foot is called the swing foot. A step thus starts and ends with both feet on the
ground, called a double stance.

3.1 Overview

Our system can be divided into an offline and an online phase. In the offline
phase we create the data structures that allow for fast motion synthesis. In the
online phase these structures are queried and the resulting motion is rendered.
An overview is given in figure 3.1.

The offline phase (chapter 4) consists of the following steps:

1. We automatically segment a corpus of motion capture data into clips of
individual steps.

2. The clips are normalized by time warping, translating and rotating.

3. Automatic clean-up is applied to the clips.

4. We store these steps in a 3D parameter space Slow using a Delaunay

Stride Space interpolation 15



3.1. OVERVIEW Sybren A. Stüvel

OFFLINE PROCESS

ONLINE PROCESS

Motion capture labInput Animations

Conversion to alternative representation
Transformation to supporting frame
Normalization of durations

Query

Spanning neighbours

BlenderInterpolation

Foot fitting
Concatenation

Root fitting

Upper body filtering
Conversion to joint orientations

Produces

Database

User interface

Footstep planner

Individual steps

Walking animation

Final animation

Performs

Performs

Generator
Performs

P
er

fo
rm

s

Step Animations

Footstep detection

Figure 3.1: Global overview of the StrideSpace method.

16 Stride Space interpolation



Sybren A. Stüvel CHAPTER 3. DESIGN AND IMPLEMENTATION

tetrahedralization. The steps in Slow are represented in our alternative
body representation (chapter 6).

The parameter space Slow is considered “low-dimensional” as it is an under-
parametrization of the footstep. It does not take orientation nor timing into
account. We use a higher dimensional distance function in section 5.1.

In the online phase (chapter 5) the user or footstep planner supplies a query
foot plan. Then, for each step in this query:

1. The query step is transformed to the lower-dimensional parameter repre-
sentation.

2. The system determines the blend candidates in Slow. These are the ver-
tices of the tetrahedron containing the query step.

3. Based on these blend candidates, the system evaluates nearby blend can-
didates using a higher-dimensional distance function.

4. The final blend candidates are blended using both a rotational and posi-
tional interpolation scheme.

5. The generated step is aligned and fitted to the previous step.

3.2 Choice of parameter space

We discuss positions both in world coordinates and in a local coordinate system
called the supporting frame. The symbols used to denote the positions of the
feet are:

world local
Supporting foot Wsup Csup

Swing foot, initial position Wfrom Cfrom

Swing foot, final position Wto Cto

In order to add a footstep animation to the database, its parameters have to
be determined. These are determined based on the supporting foot Wsup, the
initial position of the swing foot Wfrom and the final position of the swing foot
Wto. By assuming the step is performed on the ground plane, we can describe
the step by three parameters.

Stride Space interpolation 17



3.2. CHOICE OF PARAMETER SPACE Sybren A. Stüvel

World coordinates Supporting frame coordinates

translate rotate

x

z

x

z

x

z

Figure 3.2: The transformation of a single step from world coordinates to sup-
porting frame coordinates

We can create a right-handed supporting foot coordinate frame, or supporting
frame for short, by applying a translation and a rotation to the animation
(figure 3.2). The transformation changes Wxxx into Cxxx . The origin of the
coordinate frame is placed at the supporting foot, Cfrom lies on the (positive
or negative) x-axis and the y-axis is parallel to the ground plane orthogonal to
the x-axis, forming a right-handed coordinate system. Cfrom is placed on the
positive x-axis when the right foot swings, and on the negative x-axis otherwise.
The parameter vector for the step is then given as:

~P (Wsup,Wfrom,Wto) =

 Cfrom,x

Cto,x

Cto,z



18 Stride Space interpolation



Sybren A. Stüvel CHAPTER 3. DESIGN AND IMPLEMENTATION

3.3 The Canonical Step

The Canonical Step is a single footstep animation in normalized form. Each
step starts and ends with a double stance, a posture in which both feet are
resting on the ground. There is always one supporting foot that remains on the
ground for the entire duration of the step; the other foot is called the swing foot.
Walking is generally distinguished from running in that there is always one foot
on the ground, and during a brief period between the swings both feet are.

The swing foot has two relevant positions, at the middle of each stance before
and after the swing, Cfrom resp. Cto. The supporting foot has only one position
Csup, as we assume it does not move during the step. It is determined at the
keyframe in the centre of the initial stance of the swing foot, i.e. at the same
moment in the animation Cfrom is determined. The centre of the periods of
double support is used as we expect it to be the most representative of the start
and end location of the step. For deducing Cfrom an earlier keyframe may be
influenced too much by the previous step in the original motion capture data,
and a later keyframe may already be part of the swing that was not recognised
as such by the footstep detector due to noise. A similar argument can be made
for Cto.

The step’s local coordinate frame is positioned with the origin at the supporting
foot, the x-axis pointing at Cfrom, the y-axis pointing upward through the foot,
and the z-axis orthogonal to both completing the right-handed frame. In other
words, the coordinate frame is chosen in the same way as the supporting frame
described in section 3.2. This means that Csup is always (0, 0, 0).

The canonical step also includes information about the durations of the swing
and the two periods of dual support. This information is used to determine
the speed of the blended step. The animation is timewarped in a piecewise
linear fashion to predefined durations and resampled before insertion into the
database. This ensures that all stored animations have the same duration and
the same number of frames, speeding up the blending process.

Stride Space interpolation 19



3.3. THE CANONICAL STEP Sybren A. Stüvel

Step 2

Left foot
Right foot

Time

Swing

Stance

SwingStance
Stance

Step 1 Step 3

Swing

Figure 3.3: Schematic view of a walk. The yellow and blue areas represent those
moments in time where the left resp. right foot touches the ground. We blend
between steps in the periods of double support.

20 Stride Space interpolation



CHAPTER 4

Creating the Stride Space

In this chapter we elaborate on the offline construction of the parameter space.
This three-dimensional parameter space is called the Stride Space. We first look
at the way the input animations are segmented into separate steps in section 4.1.
Section 4.2 describes our three-dimensional database system. Section 4.3 tries
to answer questions like “how usable is my database for this technique?” and
“what steps are missing?”

4.1 Step segmentation

We extract individual steps from the motion capture data by determining the
moments at which the feet are planted. This in general is not trivial due to
noise and retargeting errors. The footstep detector needs to be precise in order
to get proper segmentation and eventually a decent parameterization. We use
a height- and velocity-based footstep detector[BE09].

The individual step animations are now converted to our alternative body re-
presentation. All operations are performed in this representation, until the
generated animation is handed over to the animation system.

Before determining the step’s parameters, every step is cleaned up. Foot skating
is removed by moving the root of every frame, such that the supporting foot is
placed at the origin. To be able to work with noisy motion capture data we also
adjust the feet to rest on the ground during the periods of support. Without
this step the feet could end up several centimeters above or below the ground
depending on the quality of the motion capture data and the parameters of
the footstep detector. The feet are moved only in the vertical axis, so these

Stride Space interpolation 21



4.2. THE DELAUNAY DATABASES Sybren A. Stüvel

adjustments do not change the parameters of the step. The cleanup is done
automatically and does not require any manual action.

4.2 The Delaunay Databases

To perform location queries a Delaunay tetrahedralization is created from the
parameter points. Each parameter is a point in 3D space which makes the De-
launay tetrahedralization particularly useful. The Delaunay tetrahedralization
of the parameter points combined with references to the step animations and
metadata is called the Delaunay database. Performing a location query on the
database results in the tetrahedron spanned by four vertices. These vertices
are called the spanning neighbours and represent the parameters of the four
animations that will be blended into the final animation. The properties of the
Delaunay tetrahedralization ensure that those are four points that are relatively
similar to the query point.

The side of the swing foot determines the sign of the first parameter. Let
PL ∈ R be the smallest real number such that first parameter Cfrom,x of all
left steps are in the interval (−∞, pL]. Let PR ∈ R be the largest real number
defined similarly for all right steps such that Cfrom,x ∈ [pR,∞). When all blend
candidates are inserted into the same database, querying in the interval [pL, pR]
may result in a mixture of left and right steps being blended. To prevent this,
we separate the database in two parts, one for each side of the swing foot. As a
result of this separation, extrapolation is necessary to process a query for a left
step in the interval (pL,∞) or a right step in (−∞, PR).

There are many ways in which walking animations can be classified, such as
walking forward, turning, side-stepping and walking backwards. However, these
classifications are not distinct; walking forward and decreasing the length of
the swing results in slowing down and gradually results in walking backward.
The same holds for the possibly gradual changes between walking straight and
turning sharply. This means that it is impractical to separate the database even
further based on these classifications. To decrease the likeliness that steps of dif-
ferent classifications are blended we use a higher-dimensional distance function
– see section 5.1.

22 Stride Space interpolation



Sybren A. Stüvel CHAPTER 4. CREATING THE STRIDE SPACE

Figure 4.1: Visualization of the left-step and right-step Delaunay databases with
a query point.

Stride Space interpolation 23



4.3. DATABASE ANALYSIS Sybren A. Stüvel

4.3 Database analysis

As our technique interpolates between steps, the largest steps in the database
have to be larger than any of the query steps, and similar for small steps. We
have provided an analysis algorithm that detects such potential problems. Previ-
ous studies [Hof65][EB79] have shown a relation between stride length (SL) and
the trochanterion height (TH). When sprinting at 2.5 m/s the average SL:TH
ratio was shown to be 1.10 for males and 1.11 for females. Tripathy [Tri04] mea-
sured an average ratio of 0.65 when walking. In our analysis of the database we
use a SL:TH ratio of 1.0 to determine the maximum stride length.

We do not only look at the step length, but also regard the width of the stances,
i.e. the distance between the feet. It is possible for a step to end smaller or
larger than any step starts. This means that it is impossible to continue walking
from such a step without resorting to extrapolation. The manually constructed
foot plans have been constructed to avoid this situation.

Even though our database did not have a wide enough gamut to allow for a full
spectrum of steps, it was nevertheless usable for the examples we have shown.
Figure 4.3 shows the projection of the left-side database in the p2/p3 plane. The
white disc in the centre represents the supporting right foot. The centres of the
yellow discs represent the coordinates in the supporting frame of the final double
stance, i.e. Cto. The radius of the yellow discs reflects the area in which this
step is considered to be similar to other steps, which we have taken to be 15cm
based on the size of a human foot. The blue circle represents the maximum
step size as described above. Of course the parameters for the analysis can be
adjusted for individual needs.

This is the output of the analysis software. A sidestep is defined as a step where
the sideways movement of the swing foot is more than three times the forward
movement. There is a chance of a sidestep being blended with a 180o turn,
which is why it is important to have sidesteps that end small in the database.

24 Stride Space interpolation



Sybren A. Stüvel CHAPTER 4. CREATING THE STRIDE SPACE

Importing ../final-bvh/L-test.cgal

Loading 94 vertices

Loaded left-step database, inverting XY-parameters.

You have a high enough density of steps that start small.

You have a high enough density of steps that start wide.

You should have steps that start smaller.

The smallest width in DB is 18.0 cm but should be at most 15.0 cm

You should have steps that start wider.

The widest width in DB is 77.2 cm but should be at least 95.0 cm

You have a high enough density of steps that end small.

You have a high enough density of steps that end wide.

You should have steps that end smaller.

The smallest width in DB is 18.4 cm but should be at most 15.0 cm

You should have steps that end wider.

The widest width in DB is 90.2 cm but should be at least 95.0 cm

Found 36 sidesteps.

You have no sidesteps that start small enough.

Minimal width in DB is 18.7 cm, should be at most 15.0 cm

You have no sidesteps that end small enough.

Minimal width in DB is 21.3 cm, should be at most 15.0 cm

You have a step that ends with the feet 90.2 cm apart, and 0 steps

that start with that width or wider. You need at least 3 steps

that are wider. The widest so far is 77.2 cm wide.

Figure 4.2: Output of the database analysis algorithm.

Figure 4.3: Projection of the p2/p3 plane of the left-side Delaunay database.

Stride Space interpolation 25



4.3. DATABASE ANALYSIS Sybren A. Stüvel

26 Stride Space interpolation



CHAPTER 5

Synthesizing the animation

This chapter describes the online process of the step synthesis. We first look
at the determination of the blend candidates. The blend candidates are then
interpolated using two strategies. The resulting steps are subsequently adjusted
and concatenated into the final animation.

Appendix A contains the algorithm in Python-like pseudo-code. The details
and motivations are described in the following sections. The code consists of
three major components. The Database class contains the example motion
clips and can perform location queries and find alternative blend candidates.
The Blender class concatenates and interpolates animations. The Generator

class queries the database to determine the weights and animations to use, then
passes those to the blender to create the animations.

Section 5.1 shows how we determine the blend candidates from the query. In
section 5.2 we describe the way the interpolation weights are determined. Rota-
tional and positional interpolation are explained in sections 5.3 and 5.4. Time
scaling is then applied in section 5.5. We describe the foot fitting algorithm in
section 5.6, after which the steps are concatenated in section 5.7. Section 5.8
describes the filtering of the upper body motion.

5.1 Determining blend candidates

The parameter vector ~q is extracted from the footplan query. Based on the
sign of the first parameter ~q1 we determine whether we need the database for
left steps (~q1 < 0) or right steps (~q1 ≥ 0). A location query on ~q is performed
on the appropriate database to find the spanning neighbours N = n1···4 with

Stride Space interpolation 27



5.1. DETERMINING BLEND CANDIDATES Sybren A. Stüvel

parameters P = ~p1···4. Note that N represents the canonical steps, whereas P
represents their respective parameters.

If ~q is found to lie outside the convex hull of the database, the nearest neigh-
bour is used as the only blend candidate n1, it is given weight 1.0 and further
candidate selection and weight determination are skipped.

The four neighbours P are used to span four planes in R3 – see figure 5.1.
The planes are oriented such that ~q lies on the positive side. Let Hi be the
intersection of the negative half-spaces defined by the three planes intersecting
pi. All combinations of four points in H1···4, such that exactly one point is in
each of H1···4, are guaranteed to span a tetrahedron around ~q.

To determine alternative blend candidates for ni we use a higher order distance
function Dhigh(~q, hi) to determine the distance from ~q to all steps hi ∈ Hi. If
there is a step in Hi that is closer than ni, it will replace ni as blend candidate.
Dhigh takes more information into account than our 3D parameters; it uses the
foot orientation and timing information as well. The extra dimensions that we
use are:

• orientation of the supporting foot,

• orientation of the swing foot at the initial support,

• orientation of the swing foot at the final support,

• duration of the swing,

• duration of the initial support of the swing foot,

• duration of the final support of the swing foot

The function Dhigh is defined as the weighted sum of the distances in all nine
dimensions. The weights can be adjusted by the user of the system, in the three
groups location, orientation and timing.

As the current distance function is based on the additional dimensions orien-
tation and timing, this approach can be considered a simplified form higher
dimensional querying. Rather than selecting the span set from a 3D parameter
space using an additional 6D heuristic, a full 9D or higher parameter space could
be used to achieve higher performance in blend candidate selection. Contrasting
the Slow introduced in section 3.1 this space could be called Shigh.

28 Stride Space interpolation



Sybren A. Stüvel CHAPTER 5. SYNTHESIZING THE ANIMATION

Figure 5.1: Both images show the same four spanning neighbours, from different
points of view. The three planes define the frustum for the point furthest (top)
and closes (bottom) to the camera.

Stride Space interpolation 29



5.2. DETERMINING WEIGHTS FOR INTERPOLATION Sybren A. Stüvel

x

z

x

z

x

z

Figure 5.2: These three different steps all have the same parameters. They
represent walking forward, cross-legged side-stepping and walking backwards.

The parametrization described in section 3.2 is an under-specification of the step
animations. This manifests itself in the identical parameters for the steps shown
in figure 5.2. The higher dimensional blend candidate selection can prevent
blending different types of steps.

5.2 Determining weights for interpolation

The process of weighted interpolation starts by determining the weights. This
is done for each footstep in the query. The goal of the weight determination
process is to obtain weights w1···4 such that a weighed average of the spanning
neighbours equals the query point ~q:

~q =
∑

i∈{1,...,4}

wi~pi

In order to determine those weights, two helper points are used (see figure 5.3).

The first helper point ~h1 is defined by intersecting the line p4, q with the plane

30 Stride Space interpolation



Sybren A. Stüvel CHAPTER 5. SYNTHESIZING THE ANIMATION

Figure 5.3: A tetrahedralization cell with spanning neighbour parameters ~p1···4,
query point ~q and helper points ~h1 and ~h2.

p1, p2, p3. The second helper point ~h2 is defined by intersecting lines p3, h1 and
p1, p2. Once these points are obtained we determine weights to express them in
linear combinations of ~p1···4. This method fails when ~q is on the line p3, p4, as in
that case ~h1 is undefined. This is easily worked around by taking w1 = w2 = 0;
determining w3 and w4 then does not require ~h1 nor ~h2. Other corner cases,
such as when ~q is in the plane p1, p2, p3, are handled in a similar fashion. This
solution is stable in that the resulting footstep will place the feet at the queried
positions.

In general, to determine the weights w1, w2 such that X = w1P1 + w2P2 for
points X, P1 and P2 we first check that they are collinear. The distances
|X − P1| and |P2 − P1| are then used to determine the weights:

w1 =
|X − P1|
|P2 − P1|

w2 = 1− w2

Combined with the fact that |X −P1|+ |X −P2| = |P2−P1| the above formula
gives rise to:

Stride Space interpolation 31



5.3. ROTATIONAL INTERPOLATION Sybren A. Stüvel

WP (P1, P2, X) =
|X − P |
|P2 − P1|

for P ∈ {P1, P2}

We can now use this general formula to calculate the final weights:

~h2 ≡ Wp1(~p1, ~p2,~h2) · ~p1 +Wp2(~p1, ~p2,~h2) · ~p2
~h1 ≡ Wp3

(~p3,~h2,~h1) · ~p3 +Wh2
(~p3,~h2,~h1) · ~h2

~q ≡ Wh1
(~p4,~h1, ~q) · ~h1 +Wp4

(~p4,~h1, ~q) · ~p4

The weights are not only used to blend the step animations, but also to deter-
mine the timing of the resulting motion clip, which we discuss in section 5.5.

5.3 Rotational interpolation

We store an animation A of a walking humanoid as a mapping from time, to
the orientations of all joints in the skeleton:

A : t→ {root, right hip, left hip, . . . , left subtalar}

These orientations are stored in quaternion representation. When represented
as vectors v ∈ R4, quaternions are only valid when |v| = 1, which makes interpo-
lation of more than two orientations rather bothersome. Generalized quaternion
interpolation is an interpolation method that extends the quaternion SLERP
algorithm. This generalized method can interpolate between more than two
unit-quaternions, but is neither closed-form nor fixed-time[Wik09].

We transform the joint orientations to the exponential map representation[Gra98]
for interpolation. The exponential map has some nice properties that make it
suitable for interpolation, the most important of which is that every vector

32 Stride Space interpolation



Sybren A. Stüvel CHAPTER 5. SYNTHESIZING THE ANIMATION

Result of even distribution of positions

Result of even distribution of orientations

Joint at orientation 0

Jo
in

t a
t o

ri
en

ta
tio

n 
𝝿

/2

Figure 5.4: Two orientations of a joint, at 0 and 1
2π radians. The yellow circle

shows the desired position. Based on the positions we would choose weights
w1 = w2 = 0.5. The red circle shows the result of interpolating the joint
orientations with those weights, demonstrating the difference in desired and
realized position.

v ∈ R3 represents a valid orientation in this representation. In the exponen-
tial map representation a rotation in R3 is represented by a vector in the same
orientation as the rotation axis, with length equal to the rotation angle. This
representation introduces no loss of information.

The space of rotations is not linear, but we apply weights from our linear para-
meter space. The result is that the joints do not end up at the correct position,
as shown in figure 5.4, and the parameters of the generated motion are different
from the queried parameters. This difference becomes smaller as the interpo-
lated orientations become more similar. By sourcing animations from nearby
points of the Delaunay tetrahedralization we are certain we interpolate relatively
similar animations. We have shown this in an earlier technical report[Stü09],
and the results are visible in figure 5.5. For this specific terrain the rotational
interpolation may be precise enough, but this does not hold for the general case.

Stride Space interpolation 33



5.4. POSITIONAL INTERPOLATION Sybren A. Stüvel

Figure 5.5: Standard parameterization techniques yield a high error. The yellow
and purple rings are the query placements, the red rings are the resulting foot
positions.

5.4 Positional interpolation

The difference between the interpolated foot position and the desired foot po-
sition is relatively small but not zero (see figure 5.5). A correct foot position
can be guaranteed by interpolating joint positions instead of joint orientations.
This introduces bone stretching, which we solve by replacing the thigh, knee and
shin with a virtual limb of variable length[KMA03]. Both the orientation-based
and linearized representations are kept parallel to each other. This allows us
to compare the results of rotational and positional interpolation on all joints,
utilizing the different outcomes to move parts of the skeleton in a consistent
way. The process described below is performed on both legs.

After interpolation has been performed on all joint orientations the result is
stored as Sout. The weights w1···4 are used to determine Fpos, the weighted

34 Stride Space interpolation



Sybren A. Stüvel CHAPTER 5. SYNTHESIZING THE ANIMATION

average of the positions of the subtalars in the four source animations1:

Let Forient
2 be the position of the ball of the foot in Sout. Location constraints

are added to the joints in the foot – ankle, subtalar and toe – by taking their
location in Sout and displacing the joints by Fpos−Forient. This places the foot
at the correct location without affecting the foot orientation.

After the feet have been positioned correctly, the roll of the half-plane containing
the knee is interpolated linearly using weights w1···4.

5.5 Time scaling

Every step is separated into three parts: the initial double stance, the swing,
and the final double stance. Before interpolation starts those parts have to
be of equal duration, or one animation’s swing will be blended with another
animation’s stance. This is ensured by applying a variation of registration curves
by Kovar et al.[KG03]

All step animations are stored in a normalized form such that the corresponding
events in different animations occur at the same frame. After interpolation the
animation is time-scaled in a piecewise linear fashion. We guess the correct
timing by interpolating the duration of every part of the step by taking the
weighted average of the source animation durations using w1···4. The result is
depicted in figure 5.6.

For this process the original timings are used that were stored in the canonical
step before the step duration was normalized. As the animation is only stretched
in the temporal dimension no foot skating will be introduced.

5.6 Foot fitting

After all the individual steps have been generated they have to be processed
before they can be concatenated. Without this processing the foot orientations

1The subscript “pos” denotes that it was obtained by interpolating joint positions.
2The subscript “orient” denotes that it was obtained by interpolating joint orientations.

Stride Space interpolation 35



5.6. FOOT FITTING Sybren A. Stüvel

Figure 5.6: A transition between walking and jogging that spans two locomotion
cycles. For clarity, only the right leg is shown. Without timewarping, out-of-
phase frames are combined and the character floats above the ground with its
legs nearly straight. Source: Kovar et al.[KG03]

can differ radically from one step to the next, resulting in rapid rotation of the
feet during the brief periods of double support.

The orientation of the foot is determined by the normalized foot vector expressed
in world coordinates:

F (pose) =
subtalar → toe∣∣subtalar → toe

∣∣
The foot fitting consists of two phases, depicted in figure 5.7. The first phase
updates the supporting foot of all generated steps s1···n. To update step i, the
desired supporting foot vector ~fi is calculated:

~fi =
F
(

final support of si−1

)
+ F

(
initial support of si+1

)
2

and subsequently normalized. The poses at the centre of the period of double
support is used, analogous to the approach in section 3.3. If there is no previous
or next step, the appropriate pose of si is used instead.

36 Stride Space interpolation



Sybren A. Stüvel CHAPTER 5. SYNTHESIZING THE ANIMATION

Phase one of foot fitting, adjustment of the supporting foot:

Average

Phase two of foot fitting, adjustment of the swing foot:

Blend & Set Set & Blend

Step 1 Step 2 Step 3

Steps after foot fitting:

Step 1 Step 2 Step 3

Steps before foot fitting:

Figure 5.7: The foot fitting process. The three steps at the top have to be
concatenated. The three steps at the bottom show the result of the foot fitting
algorithm. For clarity only the foot fitting process of the right (blue) foot has
been shown.

Stride Space interpolation 37



5.7. CONCATENATION OF STEPS Sybren A. Stüvel

The second phase of the foot fitting algorithm is applied to the swing foot. The
adjacent step (the next resp. previous step when adjusting the period of final
resp. initial support) is inspected to obtain the desired foot vector. This foot
vector is then applied to the support period, and blended into the swing to
produce a smooth motion. We have found that a blend window of 40% to 80%
of the swing duration produces a pleasant result.

Figure 5.8: Two examples of the sole plane in different foot configurations.

Once ~fi has been determined it is applied to the foot, identically for the sup-
porting and the swing feet. We calculate the sole plane such that the subtalar
and toe lie in the plane, and the normal is parallel to the ankle, subtalar, toe
plane. See figure 5.8. The foot is rotated in the sole plane around the subtalar,
such that the foot vector is aligned with the projection of ~fi on the sole plane.
The result is that the pitch of the foot is kept during the swing, maintaining as
much of the natural motion as possible, while still producing proper alignment
on the ground where the sole planes of the adjacent steps align.

5.7 Concatenation of steps

After the individual steps have been generated they are concatenated. Every
step Sn+1 is aligned to the previous step Sn, in such a way that the feet of
Sn+1 start where Sn ended. The final double stance of Sn is then blended with
the initial double stance of Sn+1 to produce a more or less smooth transition
(see figure 3.3). This blending is performed in more or less the same way as
the interpolation between the four source animations, including the positional
interpolation. Because in both animations the feet are placed in the same posi-

38 Stride Space interpolation



Sybren A. Stüvel CHAPTER 5. SYNTHESIZING THE ANIMATION

Figure 5.9: Root fitting. The purple and green graphs show the root height
before resp. after the root fitting procedure.

Time

P
os
iti
on

Time

P
os
iti
on

Figure 5.10: Two Bézier curves. The left curve shows the result when the
keyframes are used as-is. The right curve shows our corrected curve.

tion, no foot skating will occur. The location constraints on the ankle, subtalar
and toe are linearly interpolated. The ankle and toe are then repositioned such
that the bones keep their orientation and retain their original length, and the
subtalar remains in the same position,

The concatenation is performed during the potentially very short period of
double support. A more common approach is to blend during the swing period
of the steps before and after the current step. This approach would require
that the cadence of the steps in the input animations are the same as in the
generated walk, posing an undesirable high level of dependence between input
and output animations. For example, when all the input animations are in a
left-right-left cadence, it would be impossible to generate a left-right-right-left
walk.

Stride Space interpolation 39



5.8. UPPER BODY MOTIONS Sybren A. Stüvel

The positions of the feet of step si are guaranteed to align with the final po-
sitions of si−1 and the initial positions of si+1. This guarantee only holds for
joints in the feet. Because we generate steps independently we might introduce
a discontinuity in the root trajectory between steps. To allow for smoother
blending between steps the root joint is fitted using a cubic Bézier spline in a
window centred around the overlapping frames – see figure 5.9. A Bézier curve
is defined by four control points. The first and fourth control point define the
start and end of the curve; the second and third point define the slope at the
start and end of the curve. We use the root position on the two frames at
the start and two frames at the end of the window as control points. These
points are not directly usable, as the temporal difference between two consecu-
tive frames is too small – only 1/30 second. The curve would be too linear to
allow for smooth interpolation – see the left of figure 5.10. We move the middle
two control points such that they are at 1/3rd and 2/3rd of the window while
remaining the slope. The adjustment to the root position is also applied to the
hips and the upper body. The orientation of the root joint is interpolated using
SLERP in quaternion space, also in a window around the overlapping frames.
Due to the way we represent the body (see chapter 6) these adjustments can be
made independent of the feet, and thus do not result in any foot skating.

5.8 Upper body motions

We concatenate the generated steps during the periods of double support. These
periods can be as short as a single keyframe; a blending window this small can
cause jerky motion on the upper body. To solve this we filter the orientations of
the upper body using an efficient coordinate and time-invariant filtering tech-
nique of Lee and Shin [LS02]. This technique determines the response of a
smoothing filter in the logarithmic map. The response is then applied in the
rotation space. We believe that eventually a more intricate upper body motion
planner is needed, for dealing with more complicated tasks such as picking up
objects. This basic filter does result in natural upper body motions which is
useful when no additional tasks need to be performed by the character.

40 Stride Space interpolation



CHAPTER 6

Body representation

In this chapter we describe the body representation we use throughout the
algorithm. The major advantage of this more linearized representation is that
we can freely move the feet to any potentially reachable position without having
to worry about bone stretching. After we describe the representation itself, we
show the method by which we calculate the remaining joint angles so that the
animation can be displayed by a traditional animation system.

6.1 A linearized lower body representation

The upper body is represented by a hierarchical system of joints of which the
relative orientations are expressed by quaternions. For the upper body rotations,
including hip and root, we blend all the rotations in a linear vector space as
described in section 5.3. As we do not place any constraints on the hands or
head this technique is sufficient for our goal.

Our lower body representation is based on the morphology-independent repre-
sentation by Kulpa et al. The legs have been replaced by a “limb of variable
length”. This limb is represented by a half-plane K that contains the knee.
The coordinate frame of K is determined by the hip→ ankle vector and the
roll angle ρ. The latter is defined by the angle between the hip→ root vec-
tor and the hip→ knee vector projected onto the plane perpendicular to the
hip→ ankle vector, as shown in figure 6.1. The roll angle is normalized to the
interval [−π, π) to ensure that linear interpolation of roll angles will result in
a valid roll angle. When the leg is stretched, the hip→ knee vector lies too
close to the hip→ ankle vector to be useful. In that case the ankle→ subtalar
vector is used instead.

Stride Space interpolation 41



6.1. LINEARIZED REPRESENTATION Sybren A. Stüvel

Hip

Knee

Ankle

Subtalar

Toe

Root

Roll angle

P
ro

je
ct

io
n

P
ro

je
ct

io
n

Figure 6.1: The morphology-independent representation of Kulpa et al. (left)
and calculation of the roll angle (right)

42 Stride Space interpolation



Sybren A. Stüvel CHAPTER 6. BODY REPRESENTATION

6.2 Classical skeleton representation

After the entire walking animation has been generated, it has to be converted
to a classical skeleton representation in order to be rendered by our framework.

The half-plane K is defined by three points: the hip and ankle locations, and
the point obtained by rotating the hip→ root vector around hip→ ankle by ρ
and adding that vector to the hip location. Just as described by Kulpa et al.
the origin of K is at the hip, the z-axis points towards the ankle, the x-axis
is perpendicular to K and the y-axis completes the coordinate frame. The
coordinate system is right-handed, such that the knee will have a positive local
y-coordinate. The rule of cosines is then used with the known bone lengths to
determine the coordinates of the knee.

Before the knee location is calculated we need to ensure that the ankle positions
are reachable from the current root position. To avoid knee popping[KSG02]
we make sure this can be done without fully stretching the legs. We apply
ground adaptation as described in Kulpa et al., and set the allowed length of
the hip→ ankle vector to

(upper leg length+ lower leg length)× damping factor

We have found a damping factor of 0.995 to give good results. In case damping
is not enough to avoid full leg stretch, we lower the root to the highest point
at which the feet can be reached. This process is called ground adaptation. For
both feet we calculate the height the hips can reach, taking the damping factor
into account. The minimum of those heights and the current height of the root
will become the new height of the root.

The pelvis width is subtracted from the ankle position, so that the adjusted
ankle positions can be directly compared to the root. For adjusted ankle position
A, root position R and damped leg length L we calculate height difference h:

(Rx −Ax)2 + (Ry + h−Ay)2 + (Rz −Az)2 = L2

⇓

h = Ay −Ry +
√
L2 − (Rx −Ax)2 − (Rz −Az)2

Stride Space interpolation 43



6.2. CLASSICAL SKELETON REPRESENTATION Sybren A. Stüvel

h is calculated for both feet and taken to be the minimum. It is always a non-
positive real number, as the root will never be moved upward by this process.

After h has been determined on a frame-by-frame basis, we perform ground
adaptation filtering. This adds a degree of temporal consistency to the pelvis
height. Gaussian curves are fitted to h, as shown in figure 6.2. This method
effectively works like a low-pass filter, with the added advantage that peak
values are maintained, ensuring that the foot location constraints remain valid.
By only filtering h and not the height of the pelvis, we maintain as much of the
original pelvis movement as possible. After filtering of h it is applied by adding
h to the root height.

The knee roll angle is filtered using a similar filter as implemented for the upper
body motions. A typical result of this filtering is shown in figure 6.3.

After the locations of the lower body joints have been determined the joint
orientations are calculated using a direct method that only requires a fixed
number of operations. The following steps are performed:

1. The hip is rotated such that the knee is positioned correctly. This defines
the hip pitch and yaw.

2. The knee angle kp (the angle between knee→ hip and knee→ ankle) is
determined using the local coordinates in K. This defines the knee pitch,
its only DoF. The knee is rotated around its local x-axis over kp.

3. The hip is rotated around the hip→ knee vector such that the ankle is
positioned correctly. This defines the hip roll.

4. The ankle is rotated such that the subtalar is positioned correctly. This
defines the ankle pitch and yaw.

5. The subtalar angle sp is calculated from the coordinates of the ankle, sub-
talar and toe. This defines the subtalar pitch, its only DoF. The subtalar
is rotated around its local x-axis over sp.

6. The ankle is rotated around ankle→ subtalar such that the toe is posi-
tioned correctly. This defines the ankle roll.

44 Stride Space interpolation



Sybren A. Stüvel CHAPTER 6. BODY REPRESENTATION

−6

−5

−4

−3

−2

−1

0

A
d
a
p
ta
ti
o
n
o
f
th
e
ro
ot

h
ei
gh

t
(c
m
)

0 1 2 3 4 5 6 7

Time (sec)

Filtered adaptation - 0.98
Raw adaptation - 0.98

Figure 6.2: Filtering of the ground adaptation when using a 0.98 dampening
factor.

1

1.25

1.5

1.75

2

2.25

2.5

K
n
ee

ro
ll
an

gl
e
(r
ad

ia
n
s)

0 2 4 6 8

Time (sec)

Filtered
Raw

Figure 6.3: The knee roll of a generated walk before and after filtering.

Stride Space interpolation 45



6.2. CLASSICAL SKELETON REPRESENTATION Sybren A. Stüvel

46 Stride Space interpolation



CHAPTER 7

Results

In this section we present some of our results. Our database contained 184
steps (92 each for the left- and right-sided database). All recorded motions are
standard walking motions, including walking backward, turning, side stepping,
and transitions between those motions and forward walking. The motions were
recorded by two subjects of different body physiology, and the joint orientations
were mapped onto the same skeleton before insertion into the database. For
the upper-body filtering, we use a low-pass filter with mask

[
1
16 ,

4
16 ,

6
16 ,

4
16 ,

1
16

]
as suggested by the authors [LS02]. All experiments were executed on an AMD
Athlon 64 X2 3 GHz dual-core processor with 3 GiB RAM.

We primarily tested on three foot plans. In the first test case we guided our
character through an in-door environment – see figure 7.1. The query foot plan
consisted on 12 steps forming high-curvature locomotion. The duration of the
resulting motion was 8.2 seconds. In the second test case we guided the char-
acter along a narrow ridge – see figure 7.2. This foot plan consisted of 20 steps
with a resulting animation of 14 seconds. Note that the character automatically
started sidestepping when required. The third test case consisted of 12 steps
comprising a transition from forward-to-backward-to-forward walking – see fig-
ure 7.3. This is a difficult and somewhat unnatural foot plan, yet our technique
produces reasonable results even for such an example. The duration of the final
motion was 9.1 seconds. In the figures showing the examples (figures 7.1, 7.2
and 7.3) the purple rings indicate left query foot placements and the yellow rings
indicate right query foot placements. The resulting animations can be seen in
the accompanying videos.

Stride Space interpolation 47



Sybren A. Stüvel

Figure 7.1: A walk in a highly constrained environment.

48 Stride Space interpolation



Sybren A. Stüvel CHAPTER 7. RESULTS

Figure 7.2: A transition from normal walking to sidestepping.

Stride Space interpolation 49



Sybren A. Stüvel

Figure 7.3: A transition from forward to backward walking.

50 Stride Space interpolation



Sybren A. Stüvel CHAPTER 7. RESULTS

7.1 Performance

On average, online generation of a single step (excluding rendering, including
concatenation to previous step and filtering) takes 0.026 seconds (σ = 0.01
seconds, N = 44 steps). Conversion to the classical skeleton representation took
0.005 second per step (σ = 0.001 seconds per animation, N = 44 steps in three
animations). The average duration of a generated step was 0.62 seconds. Ge-
neration costs only 4.2% of the animation time, making this technique suitable
for real-time applications.

7.2 Upper body movement

The arm movement in the accompanying video is quite small. This is partially
caused by the input animations which show the same small arm movement.
Those animations were recorded in a relatively small space with loose carpet
tiles. The motions are by definition natural, but may appear somewhat stiff
when shown out of context.

A second cause is the interpolation technique, which acts as a low-pass filter. A
possible solution could lie in splicing a different motion onto the upper body;
for example the upper body motion of the spanning neighbour with the highest
weight could be used.

7.3 Filtering

The filtering and fitting we apply to the skeleton have shown to be effective in
smoothing out the blend artefacts. The accompanying video “raw-vs-filtered“
provides for a visual comparison.

The filtering of the knee roll resulted in a subjectively “firmer” walk. The graph
shown in figure 7.4 shows a real walking animation; this animation was different
than the generated animation, but still serves to compare jerkiness between the
filtered and real walks. Even though our filtered graph is smoother than that of
a real walk, we perceived the filtered motion as more believable walk than the
unfiltered motion.

Stride Space interpolation 51



7.4. BLEND CANDIDATE SELECTION Sybren A. Stüvel

1

1.25

1.5

1.75

2

2.25

2.5

K
n
ee

ro
ll
an

gl
e
(r
a
d
ia
n
s)

0 2 4 6 8

Time (sec)

Knee roll

Figure 7.4: The knee roll of a real walking motion.

7.4 Blend candidate selection

We generated several walking animations using blend candidate selection. In
total 88 steps were generated. On average 7.39 blend candidates were found
for every spanning neighbour. However, these were not equally distributed; for
208 spanning neighbours no blend candidates were found. Of the remaining 144
spanning neighbours only 60 had more than five alternative blend candidates.
Of the 144 spanning neighbours for which blend candidates were found, 36.1%
were replaced by a better candidate; this makes for 14.7% of all the spanning
neighbours.

The alternative blend candidates lie further from the query point in parameter
space than the original spanning neighbours. When the blend candidates are
replaced by alternatives, the alternatives receive a significantly lower weight to
ensure exact foot placement, in certain cases up to a factor 10. Even though the
“better” – according to our high-dimensional distance function – candidates get
a lower weight, the resulting animations do appear more natural. In some cases
it prevents forward and backward steps from being blended – see figure 7.5.

52 Stride Space interpolation



Sybren A. Stüvel CHAPTER 7. RESULTS

Figure 7.5: The result of blend candidate selection (BCS). The bottom character
has BCS disabled, resulting in backward and forward steps blended together.

Stride Space interpolation 53



7.4. BLEND CANDIDATE SELECTION Sybren A. Stüvel

54 Stride Space interpolation



CHAPTER 8

Conclusion and future work

We have presented an efficient technique that allows for exact parameterization
of foot-print driven synthesis. Given a query foot plan, our technique is able to
generate an animation that places the feet exactly at the desired positions. It
also takes additional soft constraints such as timing into account due to a novel
blend candidate selection strategy. The algorithm does not depend on manual
annotation or adjustments of the input motion clips.

Due to the linearized representation of the lower body no complex inverse kine-
matics nor extensive motion modification is needed. This results in a fully
automatic generation of highly constrained animation in real-time. Not only
does the generation of the step take less time than the duration of the resulting
animation, it leaves enough CPU time for other application domains, such as
path planning and rendering.

The steps generated by our technique are quite similar to each other, despite
the selection of possibly quite different blend candidates. This is a side-effect of
the blending process, where the average of four input clips is calculated. This
averaging acts like a low-pass filter over the input clips, making the output more
uniform and thus more suitable for concatenation.

8.1 Terrain height

There are many possibilities for future research. Our technique is suitable for
walking on flat terrain. It could be easily combined with the adaptation tech-
nique by Kulpa et al.[KMA03] to allow for limited height differences or moving
terrain, by planning the footsteps on a plane then adjusting the resulting ani-

Stride Space interpolation 55



8.2. BLEND CANDIDATE SELECTION Sybren A. Stüvel

mation to the height of the terrain. Another approach would be to expand Slow

with more parameters to account for the height differences. However, this would
increase the number of required input motions and blend candidates as well as
impact the query time on the database.

Our use of a linearized representation of the lower body was very useful. It will
be interesting to investigate even simpler representations to reduce and simplify
the search space. A simpler search space may also compensate for the added
complexity of a non-level terrain.

8.2 Blend candidate selection and database size

At this point the set of blend candidates is underestimated. It might be inte-
resting to preprocess the space such that all possible blend candidates can be
efficiently retrieved. This might improve the resulting animation. Also, instead
of evaluating each blend candidate individually with respect to the query step,
it might be interesting to evaluate the result of blending the set of candidates
instead.

A denser database would increase the effectiveness of the blend candidate selec-
tion. Not only would there be more candidates; a denser database could make
the smallest angle of the tetrahedra larger, thus enlarging the frustums in which
blend candidates are found. It would be interesting to subsample the database
specifically in those points that maximize the smallest angle. Subsampling has
been used by Kovar et al.[KG04] to increase accuracy. Having blend candidates
for all spanning neighbours would also reduce the observed “weight loss”, so
that a better matching animation will have a higher weight.

As can be seen in figure 4.3 it could be that there are more steps in the database
than strictly needed. It may be interesting to see the resulting animations after
the database has been pruned. This pruning could be performed automatically,
guided by the more sophisticated distance metrics mentioned above. One of
the problems with a Delaunay tetrahedralization is that they face difficulty in
handling large data [DGH01]. Pruning the database could lessen the impact.
Even though our algorithm was designed to allow the generation of a wide
variety of animations based on a relatively small corpus, a possible solution for
the case where a very large database is required could lie in an adaptation of
the Delaunay based shape reconstruction algorithm by Dey et al.[DGH01]

56 Stride Space interpolation



Sybren A. Stüvel CHAPTER 8. CONCLUSION AND FUTURE WORK

8.3 Extrapolation outside convex hull

When the query falls outside the convex hull of the database the nearest neigh-
bour is used without blending (see section 5.2). In this case the algorithm
can no longer place the feet at the query position, as extrapolation would be re-
quired to do so. However, we have observed that limited extrapolation using our
technique can result in natural motions. This can be realized by using weights
outside the [0, 1] interval. However, it is unclear to what extend extrapolation is
possible while maintaining realistic results. The unnaturalness mostly stemmed
from implausible to sheer impossible rotations of the feet. A possible solution
would be to apply a different interpolation scheme to the orientation of the feet,
or to force the feet into the query orientation. Further research is needed to
investigate these or other extrapolation techniques.

8.4 Naturalness

The naturalness of the resulting motion is partially determined by the natural-
ness of the query foot plan. Two out of the three examples in our tests were
manually set (figures 7.3 and 7.2). The example in figure 7.1 was based on the
foot plan extracted from a motion capture clip, so in a way it could be called
“pedestrianally” set. We are currently working on automatic footstep planners
that can generate a foot plan without depending on a pre-existing corpus of
motion capture data. Next to that, at this point our assumption was that se-
lecting two consecutive steps where the overlapping foot placements resemble
each other allow for a good transition. In that sense, selecting blend candidates
in Shigh functions as a posture distance metric. This technique was primarily
developed for lower-body motion, for which this assumption seems to hold. To
ensure good upper-body transitions, additional information might need to be
taken into account, and more sophisticated distance metrics might need to be
used. As an alternative the upper body motions could be planned indepen-
dently of the lower body, and then grafted onto each other. This opens the
door for better planning of the upper body, for example producing manipula-
ting or grabbing motions. Future research will have to determine whether this
is feasible.

Stride Space interpolation 57



8.4. NATURALNESS Sybren A. Stüvel

58 Stride Space interpolation



Bibliography

[AF09] Brian F. Allen and P. Faloutsos. Evolved controllers for simulated
locomotion. In MIG 2009: Proceedings of the 2nd international
workshop Motion in Games, pages 219–230. Springer, 2009.

[BE09] B. J. H. van Basten and A. Egges. Evaluating distance metrics for
animation blending. In FDG ’09: Proceedings of the 4th Interna-
tional Conference on Foundations of Digital Games, pages 199–206,
New York, NY, USA, 2009. ACM.

[BPE10] B.J.H. van Basten, P.W.A.M. Peeters, and A. Egges. The
StepSpace: Example-based footprint-driven motion synthesis.
Computer Animation and Virtual Worlds, 2010. Special issue of
selected papers from the 23rd Annual Conference on Computer An-
imation and Social Agents.

[BTT90] Ronan Boulic, Nadia Magnenat Thalmann, and Daniel Thalmann.
A global human walking model with real-time kinematic personifi-
cation. The Visual Computer, 6(6):344–358, November 1990.

[CLS03] Min Gyu Choi, Jehee Lee, and Sung Yong Shin. Planning biped
locomotion using motion capture data and probabilistic roadmaps.
ACM Transactions on Graphics, 22(2):182–203, April 2003.

[DGH01] Tamal K. Dey, Joachim Giesen, and James Hudson. Delaunay based
shape reconstruction from large data. In PVG ’01: Proceedings of
the IEEE 2001 symposium on parallel and large-data visualization
and graphics, pages 19–27, Piscataway, NJ, USA, 2001. IEEE Press.

[EB79] B. C. Elliott and B. A. Blanksby. Optimal stride length considera-
tions for male and female recreational runners. British Journal of
Sports Medicine, 13(1):15–18, 1979.

[GR96] Shang Guo and James Robergé. A high-level control mechanism for
human locomotion based on parametric frame space interpolation.

Stride Space interpolation 59



BIBLIOGRAPHY Sybren A. Stüvel

In Proceedings of the Eurographics workshop on Computer anima-
tion and simulation ’96, pages 95–107, New York, NY, USA, 1996.
Springer-Verlag New York, Inc.

[Gra98] F. S. Grassia. Practical parameterization of rotations using the
exponential map. The Journal of Graphics Tools, 3.3, 1998.

[HG07] Rachel Heck and Michael Gleicher. Parametric motion graphs. In
I3D ’07: Proceedings of the 2007 symposium on Interactive 3D
graphics and games, pages 129–136, New York, NY, USA, 2007.
ACM.

[Hof65] K. Hoffman. The relationship between the length and frequency of
stride, stature and leg length. Sport (Belgian), 8(3), 1965.

[HWBO95] Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and
James F. O’Brien. Animating human athletics. In SIGGRAPH
’95: Proceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, pages 71–78, New York, NY, USA,
1995. ACM.

[KG03] Lucas Kovar and Michael Gleicher. Flexible automatic motion
blending with registration curves. In SCA ’03: Proceedings of
the 2003 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 214–224, Aire-la-Ville, Switzerland, Switzerland,
2003. Eurographics Association.

[KG04] Lucas Kovar and Michael Gleicher. Automated extraction and pa-
rameterization of motions in large data sets. In SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers, pages 559–568, New York, NY,
USA, 2004. ACM.

[KGP02] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. Proceedings
of ACM SIGGRAPH 2002, 21(3):473–482, July 2002.

[KMA03] R. Kulpa, F. Multon, and B. Arnaldi. Morphology-independent
representation of motions for interactive human-like animation. Eu-
rographics 2005, 24(3), 2003.

[KSG02] L. Kovar, J. Schreiner, and M. Gleicher. Footskate cleanup for
motion capture editing. In SCA ’02: Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, pages 97–104, New York, NY, USA, 2002. ACM.

60 Stride Space interpolation



Sybren A. Stüvel BIBLIOGRAPHY

[LS02] J. Lee and S. Y. Shin. General construction of time-domain fil-
ters for orientation data. IEEE Transactions on Visualization and
Computer Graphics, 8(2):119–128, 2002.

[MBBT00] Jean-Sébastien Monzani, Paolo Baerlocher, Ronan Boulic, and
Daniel Thalmann. Using an intermediate skeleton and inverse
kinematics for motion retargeting. Computer Graphics Forum,
19(3):11–19, 2000.

[Pee09] P.W.A.M. Peeters. Experimentation project: Footskate. Technical
report, Universiteit Utrecht, November 2009.

[PSS02] S. I. Park, H. J. Shin, and S. Y. Shin. On-line locomotion genera-
tion based on motion blending. In SCA ’02: Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, pages 105–111, New York, NY, USA, 2002. ACM.

[PW99] Zoran Popović and Andrew Witkin. Physically based motion trans-
formation. In SIGGRAPH ’99: Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques, pages 11–
20, New York, NY, USA, 1999. ACM Press/Addison-Wesley Pub-
lishing Co.

[RCB98] Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. Verbs
and adverbs: Multidimensional motion interpolation. IEEE Com-
puter Graphics and Applications, 18(5):32–40, 1998.

[Stü09] S. A. Stüvel. Experimentation project - stepspace interpolation.
Technical report, Universiteit Utrecht, November 2009.

[Tri04] Bijan Kumar Tripathy. Study on step distance and its relation
with some morphometric features in adult male. Anthropologist,
6(2):137–139, 2004.

[UAT95] Munetoshi Unuma, Ken Anjyo, and Ryozo Takeuchi. Fourier prin-
ciples for emotion-based human figure animation. In SIGGRAPH
’95: Proceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, pages 91–96, New York, NY, USA,
1995. ACM.

[vdP97] Michiel van de Panne. From Footprints to Animation. Computer
Graphics Forum, 16(4):211–223, October 1997.

Stride Space interpolation 61



BIBLIOGRAPHY Sybren A. Stüvel

[Wik09] Wikipedia community. Generalized quaternion interpolation. 1
November 2009.

62 Stride Space interpolation



APPENDIX A

The algorithm in pseudocode

A.1 The Database class

1 ### the Database c l a s s , pseudocode

def add foo t s t ep ( s tep ) :
’ ’ ’ Adds a s i n g l e f o o t s t e p to the database . The input s t ep i s a
FootStep o b j e c t ob ta ined from the f o o t s t e p de t e c t o r . I t a l ready
conta ins informat ion about the swing duration , s tance durat ions ,
e t c . ’ ’ ’

# Convert to a canonica l s t ep by r o t a t i n g and t r a n s l a t i n g to the
# suppor t ing f oo t coord inate frame , and p i ecew i se l i n e a r time

11 # warping to the normalized dura t ions .
c anon i c a l s t e p ← new CanonicalStep ( s tep )

perform cleanup : move the f e e t onto the ground during the s tance .

# Inse r t the s t ep in to the proper Delaunay t e t r a h e d r a l i z a t i o n .
db ← delaunay db ( s tep . parameters )
ver tex ← db . i n s e r t ( s tep . parameters )
ver tex . s tep ← s tep

21 def delaunay db ( parameters ) :
’ ’ ’ Returns the Delaunay database f o r the g iven parameters . ’ ’ ’

i f parameters . x < 0 : return l e f t database
return r i g h t database

def add animation ( animation ) :
’ ’ ’ Adds a l l the f o o t s t e p s in the animation to the database . ’ ’ ’

# Run the f o o t s t e p de t e c t o r .
31 foo tp l an ← c r ea t e f oo tp l an f r om an imat i on ( animation )

Stride Space interpolation 63



A.1. THE DATABASE CLASS Sybren A. Stüvel

# Add the i n d i v i d u a l s t e p s .
for s tep in f oo tp l an :

add foo t s t ep ( s tep )

def weigh ( parameters ) :
’ ’ ’ Returns the spanning neighbours o f the query parameters .

Each spanning neighbour conta ins a canonica l s t ep and a weight .
41 ’ ’ ’

# Query the cor r ec t Delaunay t e t r a h e d r a l i z a t i o n .
db ← delaunay db ( parameters )
c e l l ← db . l o c a t e ( parameters )

i f c e l l . i s i n f i n i t e ( ) :
# The parameters were ou t s i d e the convex h u l l .
spanning ne ighbour ← db . n e a r e s t po i n t ( parameters )
spanning ne ighbour . weight ← 1 .0

51
# Return a l i s t o f only one neighbour , with weight ← 1.0
return [ spanning ne ighbour ]

# Determine the we igh t s and return the spanning neighbours .
neighbours ← f i nd b l end cand i da t e s ( query , c e l l . v e r t i c e s )
weights ← determine we ights ( neighbours , parameters )

for index , neighbour in enumerate ( ne ighbours ) :
neighbour . weight ← weights [ index ]

61
return neighbours

def determine we ights ( neighbours , q ) :
’ ’ ’ Returns the we igh t s such tha t the neighbours are i n t e r p o l a t e d
onto the query parameters ’ q ’ . ’ ’ ’

( a , b , c , d ) ← neighbours

e ← i n t e r s e c t i o n p o i n t ( Plane (a , b , c ) , Line (d , q ) )
71 f ← i n t e r s e c t i o n p o i n t ( Line ( a , b ) , Line ( c , e ) )

# (wX, wY) ← weigh (X, Y, Z ) ; such tha t wX ∗ X + wY ∗ Y = Z
( w a abf , w b abf ) ← weigh (a , b , f )
( w c c fe , w f c f e ) ← weigh ( c , f , e )
( w d deq , w e deq ) ← weigh (d , e , q )

# Return the we igh t s
return [ w e deq ∗ w f c f e ∗ w a abf ,

w e deq ∗ w f c f e ∗ w b abf ,

64 Stride Space interpolation



Sybren A. Stüvel APPENDIX A. THE ALGORITHM IN PSEUDOCODE

81 w e deq ∗ w c c fe ,
w d deq ]

def f i nd b l end cand i da t e s ( query , ne ighbours ) :
# Define four p lanes by each combination o f th ree neighbours

# Find a l l b l end candida tes
for s tep in database :

for neighbour in neighbours :
i f s tep in frustum for neighbour :

91 remember s tep as candidate for t h i s neighbour

# Se l e c t the b e s t four cand ida tes
for neighbour in neighbours :

b e s t d i s t an c e ← Dhigh ( query , neighbour )

for s tep in cand idate s for t h i s neighbour :
d i s t ← Dhigh ( query , s tep )
i f d i s t < be s t d i s t an c e :

b e s t d i s t an c e ← d i s t
101 be s t cand ida t e ← s tep

return [ bes t candidate for each neighbour ]

Stride Space interpolation 65



A.2. THE GENERATOR CLASS Sybren A. Stüvel

A.2 The Generator class

### the Generator c l a s s , pseudocode

def gene ra t e cha in ( FootPlants f o o t p l an t s ) :
’ ’ ’ Generates a chain o f concatenated s t e p s . Returns the animation . ’ ’ ’

6 s epa r a t e s t e p s ← c r e a t e s e p a r a t e s t e p s ( f o o t p l an t s )
p e r f o rm f o o t f i t t i n g ( s e p a r a t e s t e p s )
anim ← conca t ena t e s t ep s ( s e p a r a t e s t e p s )

# Convert the animation to the quaternion−based s k e l e t a l
# repre s en ta t i on .
return anim . conve r t t o sk e l e t on an im ( )

def c r e a t e s e p a r a t e s t e p s ( FootPlants f o o t p l an t s ) :
’ ’ ’ Returns a vector<CanonicalStep> o f separa te s t e p s . ’ ’ ’

16
# We need at l e a s t t h ree f oo t p lants , or there i s no walk .
assert f o o t p l an t s . s i z e > 3

# This mapping conta ins the l a s t p o s i t i on o f each f oo t .
l a s t p o s i t i o n ← {

f o o t p l an t s [ 0 ] . s i d e : f o o t p l an t s [ 0 ] . p o s i t i o n
f o o t p l an t s [ 1 ] . s i d e : f o o t p l an t s [ 1 ] . p o s i t i o n

}

26 s t ep s ← [ ]

# The f i r s t two f oo t p l an t s de f ine the i n i t i a l p o s i t i o n s o f the f e e t .
assert f o o t p l an t s [ 0 ] . s i d e 6= foo tp l an t s [ 1 ] . s i d e

# I t e r a t e over the other f oo t p l an t s to generate s t e p s .
for plant in f o o t p l an t s [ 2 : ] :

# Determine the ’ swing ’ and ’ suppor t ing ’ s i d e s .
sw ing s id e ← plant . s i d e
suppo r t i n g s i d e ← plant . s i d e . oppos i t e ( )

36
# Generate the animation based on the prev ious f oo t
# pos i t i ons , and the next f o o t po s i t i on .
s tep ← g en e r a t e p o s i t i o n ed s t e p (

l a s t p o s i t i o n [ s uppo r t i n g s i d e ] , l a s t p o s i t i o n [ sw ing s id e ] ,
p lant . po s i t i on , sw ing s id e )

s t ep s . append ( s tep )

# Remember the f i n a l p o s i t i o n s o f the f e e t .
l a s t p o s i t i o n [ s uppo r t i n g s i d e ] ← s tep . s uppo r t i n g po s i t i o n

46 l a s t p o s i t i o n [ sw ing s id e ] ← s tep . sw i n g t o po s i t i o n

66 Stride Space interpolation



Sybren A. Stüvel APPENDIX A. THE ALGORITHM IN PSEUDOCODE

return s t ep s

def g en e r a t e p o s i t i o n ed s t e p ( suppo r t i ng po s i t i on ,
sw ing f rom pos i t i on , sw ing t o po s i t i on , sw ing s id e ) :

’ ’ ’ Generates a s i n g l e s t ep p laced on the g iven po s i t i o n s . ’ ’ ’

# Determine the query parameters , as we l l as the ro t a t i on tha t b r ing s
# the query po s i t i o n s in to the suppor t ing f oo t coord inate frame .

56 ( ro ta t i on , parameters ) ← determine parameters ( suppo r t i ng po s i t i on ,
sw ing f rom pos i t i on , sw ing t o po s i t i on , sw ing s id e )

# Determine the spanning neighbours o f the query . This i n c l ude s
# the i n t e r p o l a t i o n weight f o r each neighbour .
spanning ne ighbours ← database . weigh ( parameters )

# Let the b l ender c l a s s generate an animation based on the
# in t e r p o l a t i o n we igh t s and animations from the database .
c anon i c a l s t e p ← blender . generate ( spanning ne ighbours )

66
# Rotate and t r a n s l a t e the s t ep animation in to the co r r e c t o r i en t a t i on
# and po s i t i on .
c anon i c a l s t e p . anim . r o t a t e ( r o t a t i on . conjugate ( ) )
c anon i c a l s t e p . anim . t r a n s l a t e ( s uppo r t i n g po s i t i o n )

return s tep

def p e r f o rm f o o t f i t t i n g ( vector<CanonicalStep> s e p a r a t e s t e p s ) :
’ ’ ’ Performs f oo t f i t t i n g , updat ing the s t e p s .

76
This method uses the f oo t f i t t e r , d e s c r i b ed in the appendix .
’ ’ ’

# Phase 1 , update the suppor t ing f oo t
for s tep nr , s tep in enumerate ( s e p a r a t e s t e p s ) :

# See s e c t i on 5.6 : Foot f i t t i n g
t a r g e t v e c t o r ← f i nd suppo r t ave r ag e ( s tep nr , s e p a r a t e s t e p s )

# Update each frame in the animation with the new
86 # or i en t a t i on fo r the suppor t ing f oo t .

for frame in s tep . anim :
f o o t f i t t e r . update foot ( frame , t a r g e t v e c t o r , 1 . 0 ,

s tep . s u p p o r t i n g l e g j o i n t s )

# Phase 2 , update the swing f oo t .
for s tep in s e p a r a t e s t e p s :

# Update the i n i t i a l support based on the prev ious s t ep .
# Skipped i f t h i s i s the f i r s t s t ep .

Stride Space interpolation 67



A.2. THE GENERATOR CLASS Sybren A. Stüvel

96 t a r g e t v e c t o r ← prev s t ep . f o o t v e c t o r ( s tep . sw ing s ide ,
m i d o f f i n a l s uppo r t )

f o o t f i t t e r . f i t s w i n g f r om i n i t i a l s t a n c e ( step , t a r g e t v e c t o r )

# Update the f i n a l support based on the next s t ep .
# Skipped i f t h i s i s the f i n a l s t ep .
t a r g e t v e c t o r ← next s t ep . f o o t v e c t o r ( s tep . sw ing s ide ,

m i d o f i n i t i a l s u p p o r t )
f o o t f i t t e r . f i t s w i n g t o f i n a l s t a n c e ( step , t a r g e t v e c t o r )

106 def conca t ena t e s t ep s ( vector<CanonicalStep> s e p a r a t e s t e p s ) :
’ ’ ’ Concatenates the s teps , re turns the new animation . ’ ’ ’

walk anim ← new empty animation

for s tep in s e p a r a t e s t e p s :
# Determine double−s tance dura t ions ( dsd ) . Assumes p r e v s t e p and
# nex t s t e p e x i s t , o therwi se j u s t uses the t imings from the s t ep
# i t s e l f .
d sd s t a r t ← ( s tep . d sd s t a r t + prev s t ep . dsd end ) / 2 .0

116 dsd end ← ( s tep . dsd end + next s t ep . d sd s t a r t ) / 2 .0

step anim ← s tep . timewarp ( dsd s ta r t , dsd end )

# Let the b l ender concatenate the s t ep animation to the walk
# animation we have so far , us ing an over lap o f ’ d s d s t a r t ’ seconds .
du ra t i on be f o r e c onca t ena t i on ← walk anim . durat ion ( )
b lender . concatenate ( walk anim , step anim , d sd s t a r t )

# Fit the root l o c a t i on us ing Bezier sp l ine , and root o r i en t a t i on
126 # using SLERP

f i t r o o t ( walk anim , du ra t i on be f o r e conca t ena t i on ,
opt ions . r o o t f i t w i n d ow s i z e )

return walk anim

68 Stride Space interpolation



Sybren A. Stüvel APPENDIX A. THE ALGORITHM IN PSEUDOCODE

A.3 The FootFitter class

### Foot f i t t e r c l a s s , pseudocode

def update foot ( frame , t a r g e t v c t r , weight , l e g j o i n t s ) :
’ ’ ’ Updates the f oo t o r i en t a t i on by r o t a t i n g i t in the s o l e p lane . ’ ’ ’

s ub t l r p o s ← frame . g e t l o c a t i o n c o n s t r a i n t ( l e g j o i n t s . sub ta l a r )
ank l e pos ← frame . g e t l o c a t i o n c o n s t r a i n t ( l e g j o i n t s . ankle )
toe pos ← frame . g e t l o c a t i o n c o n s t r a i n t ( l e g j o i n t s . f o o t )
c u r r en t v c t r ← toe pos − s ub t l r p o s

10
# Fi r s t ge t the p lane through the j o i n t s , then c a l c u l a t e the s o l e
# plane .
f o o t p l an e ← Plane ( ankle pos , sub t l r po s , t o e pos )
s o l e p l a n e ← Plane ( subt l r po s , toe pos , s ub t l r p o s +

f oo t p l an e . normal ( ) )

# Projec t the current and t a r g e t v e c t o r s onto the s o l e p lane
normal ← s o l e p l a n e . normal ( )
c u r r e n t on s o l e ← cu r r en t v c t r − normal . dot ( c u r r en t v c t r ) ∗ normal

20 t a r g e t o n s o l e ← t a r g e t v c t r − normal . dot ( t a r g e t v c t r ) ∗ normal

# Calcu la t e the r o l l angle , and normal ize to [−pi , p i )
r o l l a n g l e ← angle between ( cu r r en t on so l e , t a r g e t o n s o l e )
while r o l l a n g l e < pi : r o l l a n g l e +← 2 ∗ pi
while r o l l a n g l e >← pi : r o l l a n g l e −← 2 ∗ pi

r o t a t i on ← Quaternion ( r o l l a n g l e ∗ weight , normal )

# Rotate around the s u b t a l a r
30 new ankle pos ← r o t a t i on . r o t a t e ( ank l e pos − s ub t l r p o s ) + sub t l r p o s

new toe pos ← r o t a t i on . r o t a t e ( toe pos − s ub t l r p o s ) + sub t l r p o s

# Set the new con s t r a i n t s .
frame . s e t l o c a t i o n c o n s t r a i n t ( l e g j o i n t s . ankle , new ankle pos )
frame . s e t l o c a t i o n c o n s t r a i n t ( l e g j o i n t s . foot , new toe pos )

# The ro t a t i on to the l e g as we l l
l e g ← l e f t or r i g h t l e g o f the frame , depending on l e g j o i n t s
l e g . r o l l +← r o l l a n g l e

40
def f i t s w i n g t o f i n a l s t a n c e ( step , t a r g e t v e c t o r ) :

’ ’ ’ F i t s the f i n a l s tance to the t a r g e t vec to r . ’ ’ ’

# Ca lcu la t e the th ree r e l e v an t t imekeys . The NORMALXXX cons tant s
# r e f e r to the prede f ined t imekeys o f normalized animations .
s t a r t sw ing b l end ← NORMAL SWINGEND

Stride Space interpolation 69



A.3. THE FOOTFITTER CLASS Sybren A. Stüvel

− NORMAL SWINGDURATION ∗ opt ions . f o o t f i t w i d t h
s t a r t db l s t a n c e ← NORMAL SWINGEND
end db l s tance ← NORMALDURATION

50
# Rotate the f oo t in the doub le s tance to the t a r g e t vec to r
for timekey ∈ [ s t a r t db l s t an c e , end db l s tance ] :

frame ← s tep . anim . get keyframe ( timekey )
update foot ( frame , t a r g e t v e c t o r , 1 . 0 , s tep . sw i n g l e g j o i n t s )

# Blend during the swing
b lend durat ion ← s t a r t db l s t a n c e − s t a r t sw ing b l end
for timekey ∈ [ s t a r t sw ing b l end , s t a r t db l s t a n c e ) :

frame ← s tep . anim . get keyframe ( timekey )
60 weight ← ( timekey − s t a r t sw ing b l end ) / b l end durat ion

update foot ( frame , t a r g e t v e c t o r , weight , s tep . sw i n g l e g j o i n t s )

# f i t s w i n g f r om i n i t i a l s t a n c e i s s im i l a r to f i t s w i n g t o f i n a l s t a n c e
# and has not been inc luded here .

70 Stride Space interpolation



Sybren A. Stüvel APPENDIX A. THE ALGORITHM IN PSEUDOCODE

A.4 The Blender class

### the Blender c l a s s , pseudocode

# We use 30 frames per second .
FRAMERATE ← 30

5
def generate ( vector<WeightedStep> spanning ne ighbours ) :

’ ’ ’ Generates a canonica l s t ep by i n t e r p o l a t i n g the spanning neighbours . ’ ’ ’

# Get a l i s t o f we igh t s and a l i s t o f input s t e p s .
weights ← [ ne ighbour . weight for neighbour in spanning ne ighbours ]
s t ep s ← [ ne ighbour . s tep for neighbour in spanning ne ighbours ]

output s tep ← empty step ob j e c t

15 # I t e r a t e over a l l frames . We know how many those are , as t h i s i s
# done on the normalized s t e p s . Allow the timekey to be s l i g h t l y
# l a r g e r than the ac tua l duration , f o r numerical s t a b i l i t y .
f rame durat ion ← 1/FRAMERATE
for ( timekey←0 ; timekey < NORMALDURATION + 0.1 ∗ f rame durat ion ;

timekey +← f rame durat ion ) :

# Get a l i s t o f frames to blend , one frame of each input s t ep .
to b l end ← [ s t ep . get keyframe ( timekey ) for s tep in s t ep s ]

25 # In t e r p o l a t e the frames and s t o r e the r e s u l t in the output s t ep .
blended ← i n t e r p o l a t e ( to blend , weights )
output s tep . s e t key f rame ( timekey , blended )

return output s tep

def concatenate ( anim a , anim b , ove r l ap dura t i on ) :
’ ’ ’ Concatenates anim b onto anim a using ’ ove r l ap dura t i on ’ seconds
o f over lap . ’ ’ ’

35 s t a r t o f b l e nd t imek ey ← anim a . l a s t t imekey − ove r l ap dura t i on

over lap ← empty animation

# I t e r a t e over a l l frames in the over lap . Allow the timekey to be
# s l i g h t l y l a r g e r than the ac tua l duration , f o r numerical s t a b i l i t y .
f rame durat ion ← 1/FRAMERATE
for ( timekey←0 ; timekey < NORMALDURATION + 0.1 ∗ f rame durat ion ;

timekey +← f rame durat ion ) :

45 # Build a l i s t o f we igh t s and frames to perform in t e r p o l a t i o n .
weights ← [ 1 − timekey / over l ap durat i on ,

Stride Space interpolation 71



A.4. THE BLENDER CLASS Sybren A. Stüvel

timekey / ove r l ap dura t i on ]

frames ← [ anim a . get keyframe ( timekey + s t a r t o f b l e nd t imek ey ) ,
anim b . get keyframe ( timekey ) ]

# In t e r p o l a t e the frames and s t o r e the r e s u l t in the over lap
# animation .
blended ← i n t e r p o l a t e ( to blend , weights )

55 over lap . s e t key f rame ( timekey , blended )

# Append the p i e c e s
b a f t e r o v e r l a p ← anim b . crop ( over l ap durat i on , anim b . l a s t t imekey )
anim a . r emove key f rames a f t e r ( s t a r t o f b l e nd t imek ey )
anim a . append ( over lap )
anim a . append ( b a f t e r o v e r l a p )

def i n t e r p o l a t e ( frames , weights ) :
65 ’ ’ ’ Returns the i n t e r p o l a t e d keyframe . ’ ’ ’

r e s u l t ← empty keyframe
r e s u l t . r o o t t r a n s l a t i o n ←

average ( frame . r o o t t r a n s l a t i o n for frame in f rames )

# The implementat ions o f b l e n d r o t a t i o n s and
# b l e n d l o c a t i o n c on s t r a i n t s have not been inc luded , as they
# implement t r i v i a l weighted i n t e r p o l a t i o n s o f 3D vec t o r s .
b l end r o t a t i on s ( r e su l t , frames , weights )

75 b l e n d l o c a t i o n c o n s t r a i n t s ( r e su l t , frames , weights )

b l e nd l e g s ( r e su l t , frames , weights )

return r e s u l t

def b l e nd l e g s ( r e su l t , frames , weights ) :
’ ’ ’ Blends the l e g s , i . e . the f o o t p o s i t i o n s . ’ ’ ’

average ← function that takes the weighted average over the input frames
85

a v g l s ub t a l a r ← average ( l e f t sub ta l a r l o c a t i o n )
avg r s ub t a l a r ← average ( r i g h t sub ta l a r l o c a t i o n )

update foot ( r e su l t , l e f t l e g j o i n t s , a v g l s u b t a l a r )
update foot ( r e su l t , r i g h t l e g j o i n t s , a v g r s ub t a l a r )

r e s u l t . l e f t l e g r o l l ← average ( l e f t l e g r o l l )
r e s u l t . r i g h t l e g r o l l ← average ( r i g h t l e g r o l l )

95 def update foot ( frame , j o i n t s , s u b t a l a r p o s i t i o n ) :

72 Stride Space interpolation



Sybren A. Stüvel APPENDIX A. THE ALGORITHM IN PSEUDOCODE

’ ’ ’Moves the f oo t such tha t the s u b t a l a r i s po s i t i oned c o r r e c t l y . ’ ’ ’

i f the frame a l ready has c on s t r a i n t s for ankle , sub ta l a r and toe :
return

# Get the po s i t i on based on the r e s u l t o f r o t a t i o n a l i n t e r p o l a t i o n .
c u r r e n t p o s i t i o n ← frame . g e t l o c a t i o n ( j o i n t s . sub ta l a r )

o f f s e t ← s u b t a l a r p o s i t i o n − c u r r e n t p o s i t i o n
105

# Apply the o f f s e t to the en t i r e f o o t .
frame . s e t l o c a t i o n c o n s t r a i n t ( j o i n t s . subta la r , s u b t a l a r p o s i t i o n )
frame . s e t l o c a t i o n c o n s t r a i n t ( j o i n t s . ankle ,

frame . g e t l o c a t i o n ( ankle ) + o f f s e t )
frame . s e t l o c a t i o n c o n s t r a i n t ( j o i n t s . toe ,

frame . g e t l o c a t i o n ( toe ) + o f f s e t )

Stride Space interpolation 73


	Introduction
	Notation

	Related Work
	Animation techniques
	Manipulating motion capture data
	Interpolation of animations
	Research goals & motivation

	Design and Implementation
	Overview
	Choice of parameter space
	The Canonical Step

	Creating the Stride Space
	Step segmentation
	The Delaunay Databases
	Database analysis

	Synthesizing the animation
	Determining blend candidates
	Determining weights for interpolation
	Rotational interpolation
	Positional interpolation
	Time scaling
	Foot fitting
	Concatenation of steps
	Upper body motions

	Body representation
	Linearized representation
	Classical skeleton representation

	Results
	Performance
	Upper body movement
	Filtering
	Blend candidate selection

	Conclusion and future work
	Terrain height
	Blend candidate selection
	Extrapolation outside convex hull
	Naturalness

	Bibliography
	The algorithm in pseudocode
	The Database class
	The Generator class
	The FootFitter class
	The Blender class


